ORPP logo
Image from Google Jackets

Representation Theory and Number Theory in Connection with the Local Langlands Conjecture.

By: Material type: TextTextSeries: Contemporary MathematicsPublisher: Providence : American Mathematical Society, 1989Copyright date: ©1989Edition: 1st edDescription: 1 online resource (282 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780821876749
Subject(s): Genre/Form: Additional physical formats: Print version:: Representation Theory and Number Theory in Connection with the Local Langlands ConjectureDDC classification:
  • 512/.74
LOC classification:
  • QA241 -- .R44 1989eb
Online resources:
Contents:
Intro -- Contents -- Preface -- Participants -- The irreducible representation of the multiplicative group of a tame division algebra over a local field (following H. Koch and E.-W. Zink). -- Sequences of Eisenstein polynomials and arithmetic in local division algebras. -- Koch's classification of the primitive representations of a Galois group of a local field. -- On the numerical local Langlands conjecture. -- Ramification of Weil representations of local Galois groups. -- Representations of certain group extensions. -- Trace calulations. -- Root numbers - the tame case. -- Representations of locally profinite groups. -- The theorems of Bernstein and Zelevinskii. -- Principal orders and congruence Gauß sums. -- The functional equation є-factors -- Root numbers and the local Langlands conjecture. -- On the exceptional representations of GLN. -- Characters of representations of Dn. -- Matching and formal degrees for division algebras and GLn over a p-adic field. -- Tame representations and base change. -- Gauß sums and supercuspidal representations of GLn. -- Identitiés on degree two gamma factors. -- A conjecture on minimal K-types for GLn over a p-adic field. -- Preuve de la conjecture de Langlands locale numerique pour GL(n). -- References.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Preface -- Participants -- The irreducible representation of the multiplicative group of a tame division algebra over a local field (following H. Koch and E.-W. Zink). -- Sequences of Eisenstein polynomials and arithmetic in local division algebras. -- Koch's classification of the primitive representations of a Galois group of a local field. -- On the numerical local Langlands conjecture. -- Ramification of Weil representations of local Galois groups. -- Representations of certain group extensions. -- Trace calulations. -- Root numbers - the tame case. -- Representations of locally profinite groups. -- The theorems of Bernstein and Zelevinskii. -- Principal orders and congruence Gauß sums. -- The functional equation є-factors -- Root numbers and the local Langlands conjecture. -- On the exceptional representations of GLN. -- Characters of representations of Dn. -- Matching and formal degrees for division algebras and GLn over a p-adic field. -- Tame representations and base change. -- Gauß sums and supercuspidal representations of GLn. -- Identitiés on degree two gamma factors. -- A conjecture on minimal K-types for GLn over a p-adic field. -- Preuve de la conjecture de Langlands locale numerique pour GL(n). -- References.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.