ORPP logo
Image from Google Jackets

Biomaterials for Tissue Engineering.

By: Material type: TextTextSeries: Frontiers in BiomaterialsPublisher: Sharjah : Bentham Science Publishers, 2017Copyright date: ©2017Edition: 1st edDescription: 1 online resource (308 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781681085364
Subject(s): Genre/Form: Additional physical formats: Print version:: Biomaterials for Tissue EngineeringDDC classification:
  • 610.28
LOC classification:
  • R857.T55.B566 2017
Online resources:
Contents:
Intro -- CONTENTS -- FOREWORD -- PREFACE -- List of Contributors -- Synthetic Biopolymers -- Mahdis Hesami* -- INTRODUCTION -- REQUIRED CHARACTERISTICS FOR A SCAFFOLD -- BIOPOLYMERS -- Polyesters (Poly (α-Hydroxy-Acid)) -- Polycaprolactone -- Biodegradation -- Scaffold Preparation Techniques -- Application -- Polycaprolactone Blends: PCL/ Hydrogels -- Polycaprolactone Copolymers -- Polyglycolic Acid -- Biodegradation -- Application -- Polylactic Acid -- Biodegradation -- Scaffold Preparation Techniques -- Application -- Polylactide Copolymers and Composites -- Poly(lactic-glycolic Acid) -- Polylactide/ Poly(lactic-glycolic Acid) (PLA/PLGA) Blends -- Polylactide/ Polycaprolactone (PLA/PCL) -- Polylactide/ Polyethylene Glycole (PLA/PEG) -- Polylactide/ Polyhydroxybutyratevalerate (PLA/ PHBV) -- Hybrid of Poly (Hydroxyl Acids) with Collagen -- Polyhydroxyalkonates -- Biodegradation -- Scaffold Preparation Techniques -- Application -- Blends of (Polyhydroxy Alkonate) PHAs: Poly 3-hydroxybutyrate/ Polyethylene Glycol (PHB/PEG) -- Poly 3-hydroxybutyrate/Poly (lactic-co-caprolactone)(PHB/PLCL) -- Poly 3-hydroxybutyrate /Poly (3-hydroxyvalerate) (PHB/PHBV) -- Poly (Propylene Fumarate) -- Biodegradation -- Application -- Polyanhydride -- Biodegradation -- Application -- Polyurethane -- Biodegradation and Biocompatibility -- Scaffold Preparation Techniques -- Application -- Polyphosphazenes -- Biodegradation -- Application -- Polyorthoesters -- Biodegradation -- Application -- Conductive Polymers: Polypyrrole -- Scaffold Preparation Techniques -- Application -- Polypyrorrole/ Polylactide (PPy/PLA) -- Polypyrrol/ Polycaprolactone (PPy/PCL) -- Polyaniline -- Application -- Blends of Polyaniline: PANI/ Poly (Hydroxyesters) -- Polyaniline/Gelatin -- Polyaniline/Poly (hydroxybutyrate) (PANI/PHB) -- Hydrogels -- Biodegradation of Hydrogels -- Application.
Poly (Acrylic Acid) -- Poly (Ethylene Oxide) -- Alginate/ Polyethylenoxide -- Poly (Vinyl Alcohol) -- Poly(vinyl alcohol)PVA Blends: PVA/Chitosan -- Poly(vinyl alcohol)/Hydroxyapatite (PVA/HA) -- NANOCOMPOSITES -- CONCLUDING REMARKS -- FUTURE RESEARCH -- Functionalization and Surface Modification -- Tailoring the Properties of Synthetic Polymer, Importance of Polymer Physics -- Blending and Thermodynamic Aspects -- Soft Nanoparticles -- Biomimetic Strategies -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Polymer-Based Biocomposites -- Yasemin Budama-Kilinc*, Rabia Cakir-Koc, Ilke Kurt, Kubra Gozutok, Busra Ozkan, Burcu Ozkan and Ibrahim Isildak -- INTRODUCTION -- IMPORTANCE OF SYNTHETIC POLYMERIC BIOCOMPOSITES (SPBC) -- SPECIFIC MECHANICAL AND BIOLOGICAL PROPERTIES OF SPBC -- Poly(dimethyl siloxane)/Poly(N-isopropylacrylamide)(PDMS/PNIPAAM) -- Poly(ethylene glycol)/Poly(butylene terephthalate) (PEG/PBT) -- Poly(ethylene oxide)/Poly(butylene terephthalate)(PEO/PBT) -- Poly(lactic acid)/Poly(glycolic acid) (PLA/PGA) -- Poly(tetrafluoroethylene)/Poly(urethane)(PTFE/PU) -- Bisphenol A glycidyl methacrylate/Tri(ethylene glycol) dimethacrylate (BisGMA/TEGDMA) -- Poly(ethylene oxide)/Poly(propylene oxide) (PEO/PPO) -- Poly(Vinyl Alcohol)/Poly(Vinyl Pyrrolidone) (PVA/PVP) -- MANUFACTURING METHODS FOR SPBC -- Injection Molding -- Compression Molding -- Filament Winding -- Pultrusion -- APPLICATION OF SPBC'S -- Dental Applications -- Orthopedic Applications -- Bone Grafts -- Bone Plates, Screws and Fixation Devices -- Bone Cement -- Total Hip Prosthesis (Femoral Stem-Acetabular Cup) -- Artificial Tendons and Ligaments -- Drug Delivery System -- Artificial Skin -- Artificial Cornea -- Surgical Sutures -- Cardiovascular Applications -- Biosensors -- CONCLUDING REMARKS -- FUTURE RESEARCH -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES.
Bioactive ACP-Based Polymeric Biocomposites -- Drago Skrtic1,* and Joseph M. Antonucci2 -- INTRODUCTION -- ACP: STRUCTURE, COMPOSITION, THERMODYNAMIC PROPERTIES -- EFFECT OF ADDITIVES ON PHYSICOCHEMICAL CHARACTERISTICS OF ACP -- FINE TUNING OF ACP COMPOSITES BY INTERFACE COUPLING AND POLYMER GRAFTING -- ACP COMPOSITES: CYTOTOXICITY CONSIDERATIONS -- ACP COMPOSITES: ANTIMICROBIAL PROPERTIES -- EXPERIMENTAL DESIGN &amp -- METHODOLOGY -- ACP Filler Synthesis -- Formulation of Experimental Resins -- Fabrication of ACP Composites -- Methods/Techniques for Validation/Characterization/Evaluation of Fillers, Copolymers and Composites -- Atomic Emission Spectroscopy (AES) -- X-ray Diffraction (XRD) -- Fourier-Transform Infrared (FTIR) Spectroscopy -- FTIR Microspectroscopy (m-FTIR) -- Particle Size Distribution (PSD) -- Scanning Electron Microscopy (SEM) -- 1H-Nuclear Magnetic Resonance (1H-NMR) Spectroscopy -- Polymerization Shrinkage (PS) -- Polymerization Stress (PSS) Development -- Biaxial Flexure Strength (BFS) -- Shear Bond Strength (SBS) -- Water Sorption (WS) Profiles -- In vitro Cytotoxicity Studies -- Cell Culture Maintenance -- Extraction/Cell Viability Experiments -- Succinate Dehydrogenase Activity (Methyl-Thiazolyldiphenyl-Tetrazoliumbromide (MTT) Assays) -- Bacteria Inoculation and Imaging -- RESULTS &amp -- DISCUSSION -- Effect of Additives and Surface-Modifiers on Physicochemical Properties of ACP Fillers and Ensuing Composites -- Fine-tuning of the Experimental Resins: Structure-Composition-Property Studies -- Assessing Leachable and Cytotoxicity of ACP Composites -- Introducing AM Function: Preliminary Data -- CONCLUDING REMARKS -- ABBREVIATIONS -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Hydrogels: Types, Structure, Properties, and Applications -- Amirsalar Khandan1,*, Hossein Jazayeri2, Mina D. Fahmy2 and Mehdi Razavi3.
INTRODUCTION -- GELS VARIETY -- Organogel -- Xerogels -- Aerogel -- Hydrogel -- COMPOSITION OF HYDROGELS -- NANOCOMPOSITE HYDROGELS -- SCAFFOLD HYDROGELS -- HISTORY OF HYDROGELS -- HYDROGEL PRODUCT CLASSIFICATION -- Classification Based on Source -- Classification Based on Composition -- Homopolymeric Hydrogels -- Copolymeric Hydrogels -- Multipolymer Interpenetrating -- Classification Based on Configuration -- Classification Based on Cross-Linking Type -- Classification Based on Appearance -- Classification Based on Charge -- FABRICATION TECHNIQUES FOR SCAFFOLD -- Solvent Casting Techniques -- Particulate-leaching Technique -- Gas Foaming -- Phase Separation -- Electrospinning -- Porogen Leaching -- Fiber Mesh -- Fiber Bonding -- Self-Assembly -- Rapid Prototyping (RP) -- Melt Moulding -- Membrane Lamination -- Freeze Drying -- HYDROGELS APPLICATIONS -- Scaffolds for Growth Factor Release -- Angiogenesis -- Bone Formation -- Wound Healing Repair -- Regeneration of Liver -- Neural Tissue Engineering -- Drug Delivery Application -- HYDROGEL PROPERTIES -- Biocompatibility Hydrogel Scaffold -- Biodegradability Hydrogel Scaffold -- Surface Morphology Hydrogel Scaffold -- Physical Properties Hydrogel Scaffold -- Mechanical Properties Hydrogel Scaffold -- Biological Properties Hydrogel Scaffold -- In vivo Evaluation Hydrogel Scaffold -- Cell Culture of Hydrogel Scaffold -- CONCLUDING REMARKS -- FUTURE RESEARCH -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Metallic Scaffolds -- Mehdi Razavi1,* -- INTRODUCTION -- TITANIUM -- TANTALUM -- NICKEL-TITANIUM ALLOY (NITINOL) -- MAGNESIUM -- CONCLUDING REMARKS -- FUTURE PERSPECTIVES -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Gradient Fabrication -- Nasim Kiaie1,* and Mehdi Razavi2 -- INTRODUCTION -- GRADIENT IN DIFFERENT PARAMETERS OF THE SCAFFOLD -- Gradient in Pores of Scaffold.
Gradient in Mechanical Properties of Scaffold -- Gradient Surface Treatment -- Gradient Bioactive Molecules -- Gradient Fibers into Fibrous Scaffolds -- STRATEGIES TO CREATE GRADIENT SCAFFOLD -- Methods of Creating Gradient in Pores -- 3D Printing -- Phase Separation Methods -- Centrifugation Methods -- Lamination Method -- Microsphere Scaffolds -- Methods of Creating Gradient in Mechanical Properties -- Gradient in Cross-linking Density -- Mixing Chambers -- Methods of Creating Gradient in Surface Treatment -- Making Gradient in Density of Polymer Graft or Functional Groups -- Coating Surface with a Distinct Layer -- Making Gradient in Surface Wettability and Surface Energy -- Making Gradient in Nanostructure of Surface (Including nano-topography, Roughness, and Crystallinity) -- Making Gradient in Density of Nanoparticles/Microspheres on Surface -- Methods of Creating Gradient in Bioactive Molecules Embedded into Scaffold -- Controlled Delivery of Bioactive Factors from the Scaffold -- Immobilizing Bioactive Molecules into Scaffold -- Methods of Creating Fiber Gradient Scaffolds -- CONCLUDING REMARKS -- FUTURE RESEARCH -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- In Vivo and In Vitro Experiments for the Evaluation of Porous Biomaterials -- Rabia Cakir-Koc*, Yasemin Budama-Kilinc, Burak Ozdemir, Zeynep Kaya, Mehtap Sert and Neslinur Ozcelik -- INTRODUCTION -- BIOCOMPATIBILITY -- IN VIVO EXPERIMENTS -- Sensitization -- Guinea Pig Maximization Test (GPMT) -- Local Lymph Node Assay (LLNA) -- Irritation Experiments -- Ocular Irritation Test -- Draize Skin Irritation Test -- In Vivo Toxicity Experiments -- Pyrogenicity Tests -- Genotoxicity Tests -- Chromosome Abnormalities Tests -- Micronucleus (MN) Tests -- Carcinogenicity Experiments -- Immunogenicity Experiments -- Histological Experiments -- Teratogenicity Experiments.
In Vitro Experiments.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- CONTENTS -- FOREWORD -- PREFACE -- List of Contributors -- Synthetic Biopolymers -- Mahdis Hesami* -- INTRODUCTION -- REQUIRED CHARACTERISTICS FOR A SCAFFOLD -- BIOPOLYMERS -- Polyesters (Poly (α-Hydroxy-Acid)) -- Polycaprolactone -- Biodegradation -- Scaffold Preparation Techniques -- Application -- Polycaprolactone Blends: PCL/ Hydrogels -- Polycaprolactone Copolymers -- Polyglycolic Acid -- Biodegradation -- Application -- Polylactic Acid -- Biodegradation -- Scaffold Preparation Techniques -- Application -- Polylactide Copolymers and Composites -- Poly(lactic-glycolic Acid) -- Polylactide/ Poly(lactic-glycolic Acid) (PLA/PLGA) Blends -- Polylactide/ Polycaprolactone (PLA/PCL) -- Polylactide/ Polyethylene Glycole (PLA/PEG) -- Polylactide/ Polyhydroxybutyratevalerate (PLA/ PHBV) -- Hybrid of Poly (Hydroxyl Acids) with Collagen -- Polyhydroxyalkonates -- Biodegradation -- Scaffold Preparation Techniques -- Application -- Blends of (Polyhydroxy Alkonate) PHAs: Poly 3-hydroxybutyrate/ Polyethylene Glycol (PHB/PEG) -- Poly 3-hydroxybutyrate/Poly (lactic-co-caprolactone)(PHB/PLCL) -- Poly 3-hydroxybutyrate /Poly (3-hydroxyvalerate) (PHB/PHBV) -- Poly (Propylene Fumarate) -- Biodegradation -- Application -- Polyanhydride -- Biodegradation -- Application -- Polyurethane -- Biodegradation and Biocompatibility -- Scaffold Preparation Techniques -- Application -- Polyphosphazenes -- Biodegradation -- Application -- Polyorthoesters -- Biodegradation -- Application -- Conductive Polymers: Polypyrrole -- Scaffold Preparation Techniques -- Application -- Polypyrorrole/ Polylactide (PPy/PLA) -- Polypyrrol/ Polycaprolactone (PPy/PCL) -- Polyaniline -- Application -- Blends of Polyaniline: PANI/ Poly (Hydroxyesters) -- Polyaniline/Gelatin -- Polyaniline/Poly (hydroxybutyrate) (PANI/PHB) -- Hydrogels -- Biodegradation of Hydrogels -- Application.

Poly (Acrylic Acid) -- Poly (Ethylene Oxide) -- Alginate/ Polyethylenoxide -- Poly (Vinyl Alcohol) -- Poly(vinyl alcohol)PVA Blends: PVA/Chitosan -- Poly(vinyl alcohol)/Hydroxyapatite (PVA/HA) -- NANOCOMPOSITES -- CONCLUDING REMARKS -- FUTURE RESEARCH -- Functionalization and Surface Modification -- Tailoring the Properties of Synthetic Polymer, Importance of Polymer Physics -- Blending and Thermodynamic Aspects -- Soft Nanoparticles -- Biomimetic Strategies -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Polymer-Based Biocomposites -- Yasemin Budama-Kilinc*, Rabia Cakir-Koc, Ilke Kurt, Kubra Gozutok, Busra Ozkan, Burcu Ozkan and Ibrahim Isildak -- INTRODUCTION -- IMPORTANCE OF SYNTHETIC POLYMERIC BIOCOMPOSITES (SPBC) -- SPECIFIC MECHANICAL AND BIOLOGICAL PROPERTIES OF SPBC -- Poly(dimethyl siloxane)/Poly(N-isopropylacrylamide)(PDMS/PNIPAAM) -- Poly(ethylene glycol)/Poly(butylene terephthalate) (PEG/PBT) -- Poly(ethylene oxide)/Poly(butylene terephthalate)(PEO/PBT) -- Poly(lactic acid)/Poly(glycolic acid) (PLA/PGA) -- Poly(tetrafluoroethylene)/Poly(urethane)(PTFE/PU) -- Bisphenol A glycidyl methacrylate/Tri(ethylene glycol) dimethacrylate (BisGMA/TEGDMA) -- Poly(ethylene oxide)/Poly(propylene oxide) (PEO/PPO) -- Poly(Vinyl Alcohol)/Poly(Vinyl Pyrrolidone) (PVA/PVP) -- MANUFACTURING METHODS FOR SPBC -- Injection Molding -- Compression Molding -- Filament Winding -- Pultrusion -- APPLICATION OF SPBC'S -- Dental Applications -- Orthopedic Applications -- Bone Grafts -- Bone Plates, Screws and Fixation Devices -- Bone Cement -- Total Hip Prosthesis (Femoral Stem-Acetabular Cup) -- Artificial Tendons and Ligaments -- Drug Delivery System -- Artificial Skin -- Artificial Cornea -- Surgical Sutures -- Cardiovascular Applications -- Biosensors -- CONCLUDING REMARKS -- FUTURE RESEARCH -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES.

Bioactive ACP-Based Polymeric Biocomposites -- Drago Skrtic1,* and Joseph M. Antonucci2 -- INTRODUCTION -- ACP: STRUCTURE, COMPOSITION, THERMODYNAMIC PROPERTIES -- EFFECT OF ADDITIVES ON PHYSICOCHEMICAL CHARACTERISTICS OF ACP -- FINE TUNING OF ACP COMPOSITES BY INTERFACE COUPLING AND POLYMER GRAFTING -- ACP COMPOSITES: CYTOTOXICITY CONSIDERATIONS -- ACP COMPOSITES: ANTIMICROBIAL PROPERTIES -- EXPERIMENTAL DESIGN &amp -- METHODOLOGY -- ACP Filler Synthesis -- Formulation of Experimental Resins -- Fabrication of ACP Composites -- Methods/Techniques for Validation/Characterization/Evaluation of Fillers, Copolymers and Composites -- Atomic Emission Spectroscopy (AES) -- X-ray Diffraction (XRD) -- Fourier-Transform Infrared (FTIR) Spectroscopy -- FTIR Microspectroscopy (m-FTIR) -- Particle Size Distribution (PSD) -- Scanning Electron Microscopy (SEM) -- 1H-Nuclear Magnetic Resonance (1H-NMR) Spectroscopy -- Polymerization Shrinkage (PS) -- Polymerization Stress (PSS) Development -- Biaxial Flexure Strength (BFS) -- Shear Bond Strength (SBS) -- Water Sorption (WS) Profiles -- In vitro Cytotoxicity Studies -- Cell Culture Maintenance -- Extraction/Cell Viability Experiments -- Succinate Dehydrogenase Activity (Methyl-Thiazolyldiphenyl-Tetrazoliumbromide (MTT) Assays) -- Bacteria Inoculation and Imaging -- RESULTS &amp -- DISCUSSION -- Effect of Additives and Surface-Modifiers on Physicochemical Properties of ACP Fillers and Ensuing Composites -- Fine-tuning of the Experimental Resins: Structure-Composition-Property Studies -- Assessing Leachable and Cytotoxicity of ACP Composites -- Introducing AM Function: Preliminary Data -- CONCLUDING REMARKS -- ABBREVIATIONS -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Hydrogels: Types, Structure, Properties, and Applications -- Amirsalar Khandan1,*, Hossein Jazayeri2, Mina D. Fahmy2 and Mehdi Razavi3.

INTRODUCTION -- GELS VARIETY -- Organogel -- Xerogels -- Aerogel -- Hydrogel -- COMPOSITION OF HYDROGELS -- NANOCOMPOSITE HYDROGELS -- SCAFFOLD HYDROGELS -- HISTORY OF HYDROGELS -- HYDROGEL PRODUCT CLASSIFICATION -- Classification Based on Source -- Classification Based on Composition -- Homopolymeric Hydrogels -- Copolymeric Hydrogels -- Multipolymer Interpenetrating -- Classification Based on Configuration -- Classification Based on Cross-Linking Type -- Classification Based on Appearance -- Classification Based on Charge -- FABRICATION TECHNIQUES FOR SCAFFOLD -- Solvent Casting Techniques -- Particulate-leaching Technique -- Gas Foaming -- Phase Separation -- Electrospinning -- Porogen Leaching -- Fiber Mesh -- Fiber Bonding -- Self-Assembly -- Rapid Prototyping (RP) -- Melt Moulding -- Membrane Lamination -- Freeze Drying -- HYDROGELS APPLICATIONS -- Scaffolds for Growth Factor Release -- Angiogenesis -- Bone Formation -- Wound Healing Repair -- Regeneration of Liver -- Neural Tissue Engineering -- Drug Delivery Application -- HYDROGEL PROPERTIES -- Biocompatibility Hydrogel Scaffold -- Biodegradability Hydrogel Scaffold -- Surface Morphology Hydrogel Scaffold -- Physical Properties Hydrogel Scaffold -- Mechanical Properties Hydrogel Scaffold -- Biological Properties Hydrogel Scaffold -- In vivo Evaluation Hydrogel Scaffold -- Cell Culture of Hydrogel Scaffold -- CONCLUDING REMARKS -- FUTURE RESEARCH -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Metallic Scaffolds -- Mehdi Razavi1,* -- INTRODUCTION -- TITANIUM -- TANTALUM -- NICKEL-TITANIUM ALLOY (NITINOL) -- MAGNESIUM -- CONCLUDING REMARKS -- FUTURE PERSPECTIVES -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Gradient Fabrication -- Nasim Kiaie1,* and Mehdi Razavi2 -- INTRODUCTION -- GRADIENT IN DIFFERENT PARAMETERS OF THE SCAFFOLD -- Gradient in Pores of Scaffold.

Gradient in Mechanical Properties of Scaffold -- Gradient Surface Treatment -- Gradient Bioactive Molecules -- Gradient Fibers into Fibrous Scaffolds -- STRATEGIES TO CREATE GRADIENT SCAFFOLD -- Methods of Creating Gradient in Pores -- 3D Printing -- Phase Separation Methods -- Centrifugation Methods -- Lamination Method -- Microsphere Scaffolds -- Methods of Creating Gradient in Mechanical Properties -- Gradient in Cross-linking Density -- Mixing Chambers -- Methods of Creating Gradient in Surface Treatment -- Making Gradient in Density of Polymer Graft or Functional Groups -- Coating Surface with a Distinct Layer -- Making Gradient in Surface Wettability and Surface Energy -- Making Gradient in Nanostructure of Surface (Including nano-topography, Roughness, and Crystallinity) -- Making Gradient in Density of Nanoparticles/Microspheres on Surface -- Methods of Creating Gradient in Bioactive Molecules Embedded into Scaffold -- Controlled Delivery of Bioactive Factors from the Scaffold -- Immobilizing Bioactive Molecules into Scaffold -- Methods of Creating Fiber Gradient Scaffolds -- CONCLUDING REMARKS -- FUTURE RESEARCH -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- In Vivo and In Vitro Experiments for the Evaluation of Porous Biomaterials -- Rabia Cakir-Koc*, Yasemin Budama-Kilinc, Burak Ozdemir, Zeynep Kaya, Mehtap Sert and Neslinur Ozcelik -- INTRODUCTION -- BIOCOMPATIBILITY -- IN VIVO EXPERIMENTS -- Sensitization -- Guinea Pig Maximization Test (GPMT) -- Local Lymph Node Assay (LLNA) -- Irritation Experiments -- Ocular Irritation Test -- Draize Skin Irritation Test -- In Vivo Toxicity Experiments -- Pyrogenicity Tests -- Genotoxicity Tests -- Chromosome Abnormalities Tests -- Micronucleus (MN) Tests -- Carcinogenicity Experiments -- Immunogenicity Experiments -- Histological Experiments -- Teratogenicity Experiments.

In Vitro Experiments.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.