New Nanotechniques.
Material type:
- text
- computer
- online resource
- 9781608764709
- 620.1/1
- QC718.5.H5 -- N49 2009eb
Intro -- NEW NANOTECHNIQUES -- CONTENTS -- PREFACE -- Chapter 1 THERMAL PLASMA ASSISTED TECHNIQUES FOR SYNTHESIS OF HIGH TEMPERATURE MATERIAL NANOPARTICLES -- 1. ABSTRACT -- 2. INTRODUCTION -- 2.1. The Essential Steps of Thermal Plasma Aided Synthesis of Nanoparticles -- 2.2. Advantages and Disadvantages of Thermal Plasma Assisted Techniques -- 3. THERMAL PLASMA ASSISTED NANOTECHNIQUES -- 3.1. DC Transferred Arc Aided Systems -- 3.2. DC Non-Transferred Plasma Torch Systems -- 3.3. High Frequency Plasmas -- 3.4. Hybrid Reactors -- 4. THE TECHNIQUE OF PLASMA EXPANSION -- 4.1. A Segmented Plasma Torch Assisted System for Synthesis of Nanocrystalline Ceramics by Supersonic Expansion of Plasma -- 5. CONCLUSION -- 6. ACKNOWLEDGMENT -- 7. REFERENCES -- Chapter 2 STRUCTURE AND PROPERTIES OF PROTECTIVE COMPOSITE COATINGS AND MODIFIED SURFACES PRIOR AND AFTER PLASMA HIGH ENERGY JETS TREATMENT -- ABSTRACT -- 1. INTRODUCTION -- 2. MATERIAL PROCESSING BY THERMAL PLASMAS -- 2.2. Production of Pulsed Plasma Jets -- 2.3. Description of the Method of High-Energy Plasma Jet Production -- 3. MODIFICATION OF THE PROPERTIES OF METALS, ALLOYS, AND SURFACE LAYER HARDENING USING A PULSED PLASMA JET -- 3.1. Doping and Mass Transfer due to the Action of a Pulsed High-Speed Jet -- 3.2. Face-Hardening and Modification of Titanium Alloys Employing Pulsed Plasma Technologies -- 3.3. Deposition of Metal Coatings on Substrates -- 3.3.1 Coatings of SS 316 L Stainless Steel on a Low-Carbon Steel Substrate -- 3.3.2. Investigation of the Structure and Properties of Ni-Based Hastelloy C Coatings -- 4. CERAMIC AND CERAMIC-METAL COATINGS DEPOSITED ON A METAL SUBSTRATE -- 4.1. Phase and Elemental Composition of Aluminum Oxide and Its Properties -- 4.2. Properties and Structure of Protecting Coatings Hard WC-Co Alloy Base.
4.3. Structure and Morphology of the Coating of the Hard Cr3C2-Ni Alloy -- 4.4. Structure and Properties of the Powder Coating of Aluminum Alloys (Al-Co, Al-Ni) -- 5. CHARACTERISTICS OF THE STRUCTURE AND PHYSICO-MECHANICAL PROPERTIES OF HYBRID AND COMBINED COATINGS -- 5.1. TiN/Cr/Al2O3 and TiN/Al2O3 Hybrid Coatings Structure Features and Properties Resulting from Combined Treatment -- 5.2. Physico-Mechanical Properties and Structure of Nickel-Alloy Coatings Prior to and after Electron-Beam Irradiation -- 5.3 Investigation of Mass-Transfer and Implantation Processes Occurring in the Substrate Surface and the Coating Itself under Deposition of Coatings and Powders -- 5.4. Studies of the Structure-Phase Transformations and Servicing Properties of the Coatings, which Were Deposited Using the High-Velocity Plasma Jet -- 5.5. Studies of Structure and Properties of Coatings on Co-Cr Base after Duplex Treatment -- 6. PULSED PLASMA INTERACTION WITH A METAL SURFACE -- 7. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 3 STRUCTURE AND PROPERTIES OF PLASMA SPRAYED TIO2 CERAMICS -- ABSTRACT -- INTRODUCTION -- General Remarks -- Titania Stoichiomentry as an Important Topic -- Plasma Spraying of Titania -- TESTING OF SPRAYED COATINGS BY DSI TEST APPLYING OLIVER-PHARR METHOD -- Electrical Properties -- EXPERIMENTAL PART -- Description of Spraying Technique -- Annealing -- Brief Description of Characterization Techniques -- RESULTS AND DISCUSSION -- Mechanical Properties -- Physical Properties -- Reflectivity and Photocatalysis -- CONCLUSIONS -- Conclusions Regarding Spraying and Stoichiometry -- Conclusions Regarding Structure and Mechanical Properties -- Conclusions Regarding Optical, Electrical and Photocatalytic Properties -- General Conclusions -- REFERENCES.
Chapter 4 HONEYCOMB STRUCTURED POROUS FILMS VIA BREATH FIGURES: A BOTTOM-UP APPROACH TO POROUS FILMS WITH HIGHLY REGULAR HEXAGONAL ARRAY -- ABSTRACT -- INTRODUCTION -- CONVENTIONAL METHODS TOWARDS STRUCTURED MATERIALS -- THE BREAKTHROUGH: FROM BREATH FIGURES TO HONEYCOMB FILMS -- Condensation and Breath Figures -- Breath-Figures as Template for Honeycomb Films -- The Basic Technique towards Honeycomb Porous Films -- MECHANISM OF FORMATION OF HONEYCOMB STRUCTURED FILMS -- STABILIZATION AND ARRANGEMENT OF WATER DROPLETS -- VARIABLES AND CONTROL OF THE TOPOGRAPHY OF THE FILMS -- Humidity -- Airflow -- Solvent -- Concentration -- Temperature -- Substrate -- Type of Polymer and Polymer Architectures -- Additives and Surfactants -- BEYOND THE BASIC 'WATER-TEMPLATING' TECHNIQUE -- Alternative Methods -- Honeycomb Structured Porous Films with a Twist -- Stability of the Films -- Characterization Methods -- POTENTIAL AND PROMISING APPLICATIONS -- Photoelectric Conversion Generation -- Templates -- Patterning of Microbeads and Bioassays -- Medical and Diagnostic Test Kits -- Cell Culturing and Scaffolding -- Surfaces with Enhanced Hydrophobicity -- CONCLUSION -- REFERENCES -- Chapter 5 PROCESSING OF NANO-RODS OF SUPERCONDUCTING TL2BA2CA2CU3O10 ON AL-SUBSTRATE BY ELECTRO-DEPOSITION TECHNIQUE -- ABSTRACT -- 1. INTRODUCTION -- 2. ELECTRODEPOSITION PROCESS -- 2.1. Preparation of Nanostructured Metals and Alloys by Electrodeposition[ED] -- 2.2. Preparation of Nanostructured Metals and Alloys by Pulsed Electrodeposition [PED] -- 3. EXPERIMENTAL -- 4. RESULTS AND DISCUSSIONS -- CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 6 A COMPREHENSIVE OVERVIEW ON SYNTHESIS TECHNIQUES OF NANOSTRUCTURED OXIDES -- ABSTRACT -- 1. INTRODUCTION -- 2. SYNTHETIC METHODOLOGIES -- 2.1. Precipitation and Coprecipitation Methods.
2.2. Hydrothermal and Solvothermal Methods -- 2.3. Microemulsion Methods -- 2.4. Chemical Vapor Deposition Methods -- 2.5. Sol-Gel Methods -- 2.6. Combustion Methods -- 2.7. Microwave Assisted Synthesis Methods -- 2.8. Sonochemical Methods -- 2.9. Hydrothermal Oxidation of Metals -- 2.10. Thermal Evaporation Methods -- 2.11. Self-Assembly Derived Methods -- 2.12. Other Methods -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 7 ETHICAL ISSUES OF NANOTECHNOLOGY -- ABSTRACT -- INTRODUCTION -- DEFINITION OF NANOSCIENCE/NANOTECHNOLOGY -- NEED OF NANOSCIENCE AND NANOTECHNOLOGY ETHICS -- TOXICITY NATURE OF NANOPARTICLES -- HAZARD -- RISK -- EXPOSURE -- DOSE -- TOXICOLOGY OF NANOPARTICLES -- PARTICLE SIZE AND SHAPE -- PURITY -- NANO HAZARDS WARNING -- ETHICAL VALUES -- ETHICAL PRINCIPLES FOR NANOSCIENCE RESEARCH -- REFERENCES -- Chapter 8 HIERARCHICAL MODEL: BIOGEOCHEMICAL PROCESSES AND MECHANISMS THAT DRIVE CLAY NANO-AND MICROFABRIC DEVELOPMENT -- ABSTRACT -- INTRODUCTION -- INTRODUCTION TO SCIENTIFIC MODELING -- Naturalistic Models -- Formal Models -- IMPORTANT TERMINOLOGY -- Philosophical and Modeling Terms -- Clay Fabric Terms -- INTRODUCTION TO HIERARCHICAL MODELING -- CLAY FABRIC, MINERALS, AND ORGANIC MATTER: COMPONENTS OF SEDIMENTARY DEPOSITS -- CLAY FABRIC: PROCESSES AND MECHANISMS -- CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- Chapter 9 MAIN STRATEGIES TO DIRECT LOCALIZED ORGANIC GRAFTING ON CONDUCTING AND SEMICONDUCTING SUBSTRATES -- ABSTRACT -- 1. INTRODUCTION -- 2. ELECTROGRAFTING OF ORGANIC FILMS ON CONDUCTING SUBSTRATES -- 3. EXPERIMENTAL -- 4. MAIN STRATEGIES TO DIRECT LOCALIZED GRAFTING -- 4.1. Localized Electrografting on Composite Surfaces: A Mask-Free Technique[33] -- 4.2. Directed Organic Grafting on Locally Doped Silicon Substrates[34, 74].
4.3. Localized Organic Grafting on Photosensitive Semiconductors Substrates -- 4.4. Direct SECM and AFM Localized Electrografting on Conducting Substrates -- 5. CONCLUSIONS -- ACKNOWLEDGMENT -- REFERENCES -- Chapter 10 ORGANIC-INORGANIC NANO-COMPOSITE CATION EXCHANGE MATERIALS -- ABSTRACT -- 1. INTRODUCTION -- 2. PREPARATION OF ORGANIC-INORGANIC NANO-COMPOSITE CATION-EXCHANGE MATERIALS -- 2.1. Preparation of Organic Polymer -- 2.1.1. Poly-o-Toluidine -- 2.1.2. Poly-o-Anisidine -- 2.2. Preparation of Inorganic Precipitate -- 2.2.1 Preparation of Th(IV) Phosphate -- 2.2.2. Preparation of Zr(IV) Phosphate -- 2.2.3. Preparation of Sn(IV) Phosphate -- 2.3. Preparation of Nano-Composite Poly-o-Toluidine Th(IV) Phosphate, Poly-o-Toluidine Zr(IV) Phosphate and Poly-o-Anisidine Sn(IV) Phosphate Cation Exchangers -- 3. PHYSICOCHEMICAL PROPERTIES OF NANO-COMPOSITE CATION EXCHANGE MATERIALS -- Chemical Stability -- 3.1. Thermal Effect on Ion Exchange Capacity -- 3.2. Chemical Composition -- 3.3. TEM (Transmission Electron Microscopy) Studies -- 3.4. SEM (Scanning Electron Microscopy) -- 3.5. X-ray Studies -- 3.6. FTIR Studies -- 3.7. TGA & -- DTA Studies -- 4. ION-EXCHANGE BEHAVIOR OF NANO-COMPOSITE CATION EXCHANGE MATERIAL -- 4.1 Effect of Eluant Concentration -- 4.2. pH-Titration -- 4.3. Distribution Studies -- 4.4. Possible Chemical Reactions -- 4.5. Separation Factor -- 5. ELECTRICAL BEHAVIOR OF NANO-COMPOSITE CATION-EXCHANGE MATERIALS -- 5.1. Preparation of POTTh (IV)P, POTZr(IV)P and POASn(IV)P composites -- 5.2. Electrical Conductivity Measurement Studies -- 5.2.1. Preparation of the Pellets -- 5.2.2. Electrical Conductivity Measurements -- 5.2.3. Isothermal Technique -- 5.2.4. Cyclic Technique -- 5.2.5. Environmental Stability of the Conductivity of Composites -- 6. STUDIES ON ION-SELECTIVE MEMBRANE ELECTRODE.
6.1. Preparation and Characterization of Ion-Exchange Membrane.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.