Innovative Strategies in Tissue Engineering.
Material type:
- text
- computer
- online resource
- 9788793237100
- 610.28
- R857.T55 .I566 2015
Cover -- Half Title -- Title -- Copyright -- Contents -- Preface -- List of Figures -- List of Abbreviations -- 1. Bioactive Nanocomposites withApplications in Biomedicine -- Abstract -- 1.1 Introduction -- 1.2 Factors that Influence the Quality of a Biomaterial -- 1.3 Layered Silicate Nanocomposites for Biomaterials -- 1.3.1 Layered Silicate Properties -- 1.3.2 Layered Silicate Purification -- 1.3.3 Layered Silicate in Drug Release Systems -- 1.3.4 Biopolymers Properties -- 1.4 Routes for Obtaining Bio-Nanocomposites -- 1.5 Biomaterials Development -- 1.6 Conclusions -- References -- 2. Cerium Dioxide Nanoparticles ProtectCardiac Progenitor Cells against theOxidative Stress -- Abstract -- 2.1 Interaction of Cerium Oxide Nanoparticleswith Biological Systems -- 2.2 Cerium Oxide Nanoparticles Shield Cardiac PrecursorCells against the Oxidative Stress -- References -- 3. Animals Models and In Vitro Alternativesin Regenerative Medicine: Focus onBiomaterials Development -- 3.1 Introduction -- 3.1.1 Animals in Medical Research -- 3.1.2 Ethical Considerations of Animal Use -- 3.2 Designing Animal Experiments -- 3.2.1 Randomization and Blinding -- 3.2.2 Control Groups -- 3.2.3 Statistical Analysis -- 3.2.4 Design Stages -- 3.3 Limitations of Animal Models -- 3.3.1 Animal Species -- 3.3.2 Health and Age Status -- 3.3.3 Reproducibility -- 3.4 Examples of Animal Models for Cardiac and CornealRegenerative Medicine Testing -- 3.4.1 Myocardial Infarct and Other Ischemic Models -- 3.4.1.1 Myocardial coronary artery ligation -- 3.4.1.3 Hind-limb ischemia -- 3.4.1.2 Cryoinjury -- 3.4.2 Corneal Transplantation Models -- 3.4.2.1 Animal species -- 3.4.2.2 Lamellar and penetrating keratoplasty -- 3.4.2.3 Infectious models -- 3.5 In Vitro Systems as Alternatives to Animal Testing -- 3.5.1 In Vitro Corneal Equivalents for Screening Biomaterialsas Potential Implants.
3.5.2 In Vitro Angiogenesis Models -- 3.6 Conclusion -- References -- 4. Differentiation Plasticity of GermlineCell-Derived Pluripotent Stem Cells andTheir Potential Application in RegenerativeMedic -- Abstract -- 4.1 Introduction -- 4.2 Hepatocytes Derived from GPSCs -- 4.3 Cardiac Cells Derived from GPSCs -- 4.4 Neuronal Cells Derived from GPSCs -- 4.5 Hematopoietic Cells from GPSCs -- 4.6 Vascular Cells Derived from GPSCs -- References -- 5. Mechanical Stimulation in TissueEngineering -- 5.1 Background and Introduction -- 5.1.1 Mechanical Theories of Material Damage -- 5.1.2 Damage of Living Tissue -- 5.2 Mechanical Loading in Two Dimensions -- 5.2.1 Hertz-inspired Tissue Deformation -- 5.2.2 Preliminary Results of Cell Straining -- 5.3 Conclusions and Outlook -- References -- 6. Immune Properties of Mesenchymal StemCells in the Translation of Neural Disorders -- Abstract -- 6.1 Introduction -- 6.2 MSC Immunology -- 6.3 MSCs and Cancer -- 6.3.1 Role in Tumor Growth -- 6.3.2 MSCs in Tumor Suppression -- 6.3.3 MSC and Brain Cancer -- 6.4 Regenarative Potential -- 6.5 Safety -- 6.6 Conclusion -- Refrences -- 7. Novel Design of Manufacturing Bioreactorand Facility of Cell-Based Health CareProducts for Regenerative Medicine -- Abstract -- 7.1 Introduction -- 7.2 Bioreactor Design for Cell Processing -- 7.3 Facility Design for Cell Processing -- 7.4 Flexible Modular Platform Technology -- 7.5 Acknowledgments -- References -- 8. Insight into Melanoma Stem Cells:The Roleof the Hedgehog Signaling in RegulatingSelf-Renewal and Tumorigenicity -- 8.1 Introduction -- 8.2 Evidence for the Existance of Melanoma Stem Cellswith Self-Renewing and Tumorigenic Properties -- 8.3 The Hedgehog Signaling Pathway -- 8.4 Role of the Hedgehog Signaling in RegulatingSelf-Renewal and Tumorigenicity of MelanomaStem Cells -- 8.5 Conclusions -- 8.6 Acknowledgement.
References -- 9. A Quest for Refocussing Stem CellInduction Strategies: How to Deal withEthical Objections and Patenting Problems -- Abstract -- 9.1 Introduction -- 9.2 Potential for Autonomous Pattern Formation:Embryoid Bodies -- 9.3 Potential for Assisted Development:TetraploidComplementation -- 9.4 Pluripotency, an Obstacle for Patenting -- 9.5 Alternative Approaches -- 9.6 Conclusions -- 9.7 Acknowledgments -- References -- 10. Constitutive Equations in FiniteViscoplasticity of Nanocomposite Hydrogels -- 10.1 Introduction -- 10.2 Constitutive Model -- 10.2.1 Kinematic Relations -- 10.2.2 Free Energy Density of a Hydrogel -- 10.2.3 Derivation of Constitutive Equations -- 10.3 Simplification of the Constitutive Equations -- 10.4 Fitting of Observations -- 10.4.1 Nanocomposite Hydrogels Subjected to Dryingand Swelling -- 10.4.2 As-Prepared Poly(Dimethylacrylamide)-Silica Hydrogels -- 10.4.3 As-Prepared Polyacrylamide-Clay Hydrogels -- 10.4.4 Discussion -- 10.5 Concluding Remarks -- 10.6 Acknowledgement -- References -- 11. Regulatory Issues in Developing AdvancedTherapy Medicinal Products withStem Cells in Europe -- 11.1 Introduction -- 11.2 European Regulatory Frame for ATMP -- 11.3 Stem Cell-Based ATMP -- 11.4 Quality Issues for Stem Cell-Based ProductDevelopment -- 11.5 Non Clinical Issues for Stem Cell-Based ProductDevelopment -- 11.6 Clinical Issues for Stem Cell-Based ProductDevelopment -- 11.7 Conclusion -- References -- Index -- Editor's Biographies.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.