ORPP logo
Image from Google Jackets

Ceramic and Polymer Matrix Composites : Properties, Performance and Applications.

By: Contributor(s): Material type: TextTextSeries: Polymer Science and TechnologyPublisher: Hauppauge : Nova Science Publishers, Incorporated, 2010Copyright date: ©2010Edition: 1st edDescription: 1 online resource (380 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781616684679
Subject(s): Genre/Form: Additional physical formats: Print version:: Ceramic and Polymer Matrix Composites: Properties, Performance and ApplicationsDDC classification:
  • 620.1/4
LOC classification:
  • TA418.9.C6 -- C385 2010eb
Online resources:
Contents:
Intro -- CERAMIC AND POLYMER MATRIX COMPOSITES: PROPERTIES, PERFORMANCE AND APPLICATIONS -- CERAMIC AND POLYMER MATRIX COMPOSITES: PROPERTIES, PERFORMANCE AND APPLICATIONS -- CONTENTS -- PREFACE -- Chapter 1SURFACE MODIFICATION OF ULTRA HIGHMODULUS POLYMERIC FIBERS: EFFECTS ONINTERFACIAL ADHESION AND MECHANICALPROPERTIES OF EPOXY RESIN COMPOSITES -- Abstract -- Introduction -- 1. Aramid Fibers -- 1.1. General Aspects -- 1.2. Chemical Treatments -- 1.3. Plasma Treatment -- 2. Ultra High-Modulus Polyethylene Fibers -- 2.1. General Description -- 2.2. Surface Treatments -- 2.2.1. Chemical Reagents -- 2.2.2. Corona and Plasma Treatments -- 2.2.3. Morphological Modification of UHMPE Fibers -- 3. Discussion -- Experimental -- 1. Materials and Methods -- 2. Treatment of Aramid Fibers -- 2.1. Treatment with Methacryloyl Chloride -- 2.2. Coating with Resole Resin -- 2.3. Coating with Novolac Resin -- 2.4. Treatments of UHMPE Fibers -- 3. Characterization of Treated Fibers -- 3.1. Scanning Electron Microscopy -- 3.2. Surface Characteristics -- 4. Preparation of Composites -- 5. Mechanical Measurements on Composites -- Results and Discussion -- References -- Chapter 2MANUFACTURING AND FEATURESOF ACOUSTICALLY OPTIMIZED NATURALFIBRE REINFORCED PLASTICS -- Abstract -- 1. Introduction -- 2. Experimental Process -- 2.1. Specification Analysis -- 2.2. Development Concept of Construction -- 2.3. Materials -- 2.4. Manufacturing Technology -- 3. Results -- 3.1. Characterisation of Mechanical Properties -- 3.2. Verification of Porosity -- 3.3. Characterisation of Acoustic Properties -- 3.3.1. Sound Insulation -- 3.3.2. Sound Absorption -- 4. Conclusion -- Acknowledgment -- References -- Chapter 3EFFECTS OF MICROSTRUCTURE ON RESIDUALSTRESSES IN DSE AL2O3/YAG CERAMICCOMPOSITE BY EXPERIMENTAL ANDNUMERICAL INVESTIGATIONS -- Abstract -- 1. Introduction.
2. Experimental Procedure -- 2.1. Materials -- 2.2. X-Ray Diffraction Technique -- 2.3. Creation of FEM Model and Simulation -- 2.3.1. Drawing of Phase Profiles Based on Real Image -- 2.3.2. Generation of Mesh and Assignment of Material Properties -- 2.3.3. Finite Element Calculation -- 3. Result -- 3.1. Residual Stress Measured by X-Ray Diffraction -- 3.2. Residual Stress Calculated by FEM Simulation -- 4. Discussion -- Conclusion -- Acknowledgments -- References -- Chapter 4INTRODUCTION OF PARTICLE DISPERSIONREINFORCED CERAMIC MATRIX COMPOSITES -- Abstract -- 1. Introduction -- 2. Fabrication Processes of Particle Reinforced Ceramic -- 2.1. Theory of Sintering Densification -- 2.2. Processing Technology -- 2.3. Equipment -- 3. Toughening Mechanisms -- 3.1. Toughening Mechanisms of Thermal Expansion Mismatch -- 3.2. Toughening Mechanisms of Micro-Crack Zone -- 3.3. Toughening Mechanisms of Residual Stress Field -- 3.4. Toughening Mechanisms of Crack Bridging -- 4. Practice of Particle Reinforced Ceramic MatrixComposites -- References -- Chapter 5A NOVEL STRATEGY FOR DEVELOPINGPOLYMER NANOCOMPOSITE WITH HIGHDIELECTRIC CONSTANT -- Abstract -- Introduction -- Experimental Section -- Results and Discussion -- Conclusion -- References -- Chapter 6POLYMER MATRIX COMPOSITES:PROPERTIES, PERFORMANCE ANDAPPLICATIONS -- Abstract -- 1. Introduction -- 2. Micro-Compounding of Recycled PET-ClayNanocomposites -- 2.1. Materials -- 2.2. Preparation of Nanocomposites -- 2.3. Structure of Nanocomposites -- 2.4. Melt Rheology -- 2.5. Results and Discussion -- 3. Advanced-Compounding of Compatibilized PPNanocomposites -- 3.1. Materials -- 3.2. Compounding Process -- 3.3. Extensional Melt Rheology -- 3.4. Results and Discussion -- Conclusion -- Acknowledgments -- References -- Chapter7CONTACTSTRENGTHOFCERAMICMATERIALS -- Abstract -- 1.Introduction -- 2.WeibullAnalysis.
3.MechanicalTestsforDeterminationofBendingandContactStrength -- 3.1.Four-PointBendingTest -- 3.2.ContactTestUsingRollers -- 3.3.ContactTestUsingSpheres -- 4.ExperimentalMaterialsandMechanicalTests -- 4.1.ExperimentalMaterials -- 4.2.PreparationofSamplesandMaterialAnalyses -- 4.3.MechanicalTests -- 4.3.1.Four-PointBendingTest -- 4.3.2.Single-CycleContactTestUsingRollers -- 4.3.3.Single-CycleContactTestUsingSpheres -- 4.3.4.Multi-CycleContactTestUsingSpheres -- 4.3.5.Multi-cycleContactTestUsingSpheresandFour-PointBendingTest -- 4.3.6.ContactFatigueTest -- 5.ResultsandDiscussion -- 5.1.MicrostructuralAnalysis -- 5.2.MechanicalTests -- 5.2.1.Single-CycleContactTestUsingRollers -- 5.2.2.Single-CycleContactTestUsingSpheres -- 5.2.3.Multi-cycleContactTestUsingSpheres -- 5.2.4.Multi-cycleContactTestUsingSpheresandFour-PointBendingTest -- 5.2.5.ContactFatigueTest -- Acknowledgments -- References -- Chapter8NEWANALYTICALMODELOFTHERMALSTRESSESANDANALYTICALFRACTUREMECHANICSINTWO-COMPONENTMATERIALS.APPLICATIONTOTWO-COMPONENTCERAMICS -- Abstract -- 1.Introduction -- 1.1."Integration"and"Differential"Approaches -- 1.2.RealTwo-ComponentMaterial -- 1.3.MathematicalTechniques -- 1.4.AnalyticalFractureMechanics -- 2.CellModel.GeometricBoundaryConditionforCellMatrix -- 2.1.DeterminationofDistancerc -- 2.1.1.Intervals'∈0,ˇ/4, ∈0, ∗) -- 2.1.2.Intervals'∈0,ˇ/4, ∈ ∗,ˇ/2 -- 3.ThermalStressesinSolidContinuum -- 3.1.CoordinateSystemandRadialDisplacement -- 3.2.EquationsofSolidContinuumMechanics -- 3.3.SolutionofDifferentialEquationsforRadialDisplacement -- 3.4.ReasonofThermalStresses -- 4.BoundaryConditions -- 4.1.SphericalParticle -- 4.2.CellMatrix -- 5.ThermalStressesinIsotropicMulti-particle-matrixSystem -- 5.1.SphericalParticle -- 5.2.CellMatrix -- 5.3.RadialStressp -- 6.AnalyticalFractureMechanics -- 6.1.GeneralAnalysis -- 6.2.DeterminationofCurveIntegralWc.
6.2.1.DeterminationofFunctionfc -- 6.2.2.DeterminationofCurveIntegralsWcp(x12,R),Wcm1(x12,R),Wcm2(x12,R) -- 6.3.CrackInitiation -- 6.4.CrackPropagation -- 6.4.1.DeterminationofCrackTipPosition -- 6.4.2.CrackPropagationinSphericalParticle -- 6.4.3.CrackPropagationinCellMatrix -- 6.4.4.DeterminationofIntegrals -- 7.ApplicationtoTwo-ComponentCeramics -- Acknowledgments -- References -- Chapter 9FINITE ELEMENT THERMAL ANALYSISOF CERAMICS MATRIX COMPOSITES -- Abstract -- 1. Introduction -- 2. Ceramic Matrix Composites (CMCs) -- 2.1. Manufacturing of CMCs -- 2.1.1. Infiltration -- 2.1.2. Polymer Infiltration and Pyrolysis -- 2.2. Thermal Behaviour of CMCs -- 2.3. Experimental Measurements of Thermal Diffusivity -- 3. Modelling of a Plain Weave CMC -- 3.1. Manufacturing Process -- 3.2. Classes of Porosities -- 3.2.1. Inter-Fibre Micro-Porosity (Class A) -- 3.2.2. Trans-Tow Cracks (Class B Porosity) -- 3.2.3. Matrix Cracks (Class C Porosity) -- 3.2.4. Denuded Matrix Regions (Class D Porosity) -- 3.3. Quantification of Porosity -- 3.4. Thermal Transport Modelling of DLR-XT -- 3.4.1. Thermal Properties -- 3.4.2. Thermal Analysis of DLR-XT - Strategy and Results -- 4. Modelling of a Complex 8-Satin Weave CMC -- 4.1. Thermal Analysis -- 5. Computational Aspects -- 5.1. Parallel Processing -- Conclusions -- References -- Chapter 10DAMAGE REDUCTION METHODS IN DRILLINGPOLYMERIC MATRIX COMPOSITES -- Abstract -- Introduction -- Special Drills -- Drilling Conditions -- Process Parameters -- Conclusion -- References -- INDEX -- Blank Page.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- CERAMIC AND POLYMER MATRIX COMPOSITES: PROPERTIES, PERFORMANCE AND APPLICATIONS -- CERAMIC AND POLYMER MATRIX COMPOSITES: PROPERTIES, PERFORMANCE AND APPLICATIONS -- CONTENTS -- PREFACE -- Chapter 1SURFACE MODIFICATION OF ULTRA HIGHMODULUS POLYMERIC FIBERS: EFFECTS ONINTERFACIAL ADHESION AND MECHANICALPROPERTIES OF EPOXY RESIN COMPOSITES -- Abstract -- Introduction -- 1. Aramid Fibers -- 1.1. General Aspects -- 1.2. Chemical Treatments -- 1.3. Plasma Treatment -- 2. Ultra High-Modulus Polyethylene Fibers -- 2.1. General Description -- 2.2. Surface Treatments -- 2.2.1. Chemical Reagents -- 2.2.2. Corona and Plasma Treatments -- 2.2.3. Morphological Modification of UHMPE Fibers -- 3. Discussion -- Experimental -- 1. Materials and Methods -- 2. Treatment of Aramid Fibers -- 2.1. Treatment with Methacryloyl Chloride -- 2.2. Coating with Resole Resin -- 2.3. Coating with Novolac Resin -- 2.4. Treatments of UHMPE Fibers -- 3. Characterization of Treated Fibers -- 3.1. Scanning Electron Microscopy -- 3.2. Surface Characteristics -- 4. Preparation of Composites -- 5. Mechanical Measurements on Composites -- Results and Discussion -- References -- Chapter 2MANUFACTURING AND FEATURESOF ACOUSTICALLY OPTIMIZED NATURALFIBRE REINFORCED PLASTICS -- Abstract -- 1. Introduction -- 2. Experimental Process -- 2.1. Specification Analysis -- 2.2. Development Concept of Construction -- 2.3. Materials -- 2.4. Manufacturing Technology -- 3. Results -- 3.1. Characterisation of Mechanical Properties -- 3.2. Verification of Porosity -- 3.3. Characterisation of Acoustic Properties -- 3.3.1. Sound Insulation -- 3.3.2. Sound Absorption -- 4. Conclusion -- Acknowledgment -- References -- Chapter 3EFFECTS OF MICROSTRUCTURE ON RESIDUALSTRESSES IN DSE AL2O3/YAG CERAMICCOMPOSITE BY EXPERIMENTAL ANDNUMERICAL INVESTIGATIONS -- Abstract -- 1. Introduction.

2. Experimental Procedure -- 2.1. Materials -- 2.2. X-Ray Diffraction Technique -- 2.3. Creation of FEM Model and Simulation -- 2.3.1. Drawing of Phase Profiles Based on Real Image -- 2.3.2. Generation of Mesh and Assignment of Material Properties -- 2.3.3. Finite Element Calculation -- 3. Result -- 3.1. Residual Stress Measured by X-Ray Diffraction -- 3.2. Residual Stress Calculated by FEM Simulation -- 4. Discussion -- Conclusion -- Acknowledgments -- References -- Chapter 4INTRODUCTION OF PARTICLE DISPERSIONREINFORCED CERAMIC MATRIX COMPOSITES -- Abstract -- 1. Introduction -- 2. Fabrication Processes of Particle Reinforced Ceramic -- 2.1. Theory of Sintering Densification -- 2.2. Processing Technology -- 2.3. Equipment -- 3. Toughening Mechanisms -- 3.1. Toughening Mechanisms of Thermal Expansion Mismatch -- 3.2. Toughening Mechanisms of Micro-Crack Zone -- 3.3. Toughening Mechanisms of Residual Stress Field -- 3.4. Toughening Mechanisms of Crack Bridging -- 4. Practice of Particle Reinforced Ceramic MatrixComposites -- References -- Chapter 5A NOVEL STRATEGY FOR DEVELOPINGPOLYMER NANOCOMPOSITE WITH HIGHDIELECTRIC CONSTANT -- Abstract -- Introduction -- Experimental Section -- Results and Discussion -- Conclusion -- References -- Chapter 6POLYMER MATRIX COMPOSITES:PROPERTIES, PERFORMANCE ANDAPPLICATIONS -- Abstract -- 1. Introduction -- 2. Micro-Compounding of Recycled PET-ClayNanocomposites -- 2.1. Materials -- 2.2. Preparation of Nanocomposites -- 2.3. Structure of Nanocomposites -- 2.4. Melt Rheology -- 2.5. Results and Discussion -- 3. Advanced-Compounding of Compatibilized PPNanocomposites -- 3.1. Materials -- 3.2. Compounding Process -- 3.3. Extensional Melt Rheology -- 3.4. Results and Discussion -- Conclusion -- Acknowledgments -- References -- Chapter7CONTACTSTRENGTHOFCERAMICMATERIALS -- Abstract -- 1.Introduction -- 2.WeibullAnalysis.

3.MechanicalTestsforDeterminationofBendingandContactStrength -- 3.1.Four-PointBendingTest -- 3.2.ContactTestUsingRollers -- 3.3.ContactTestUsingSpheres -- 4.ExperimentalMaterialsandMechanicalTests -- 4.1.ExperimentalMaterials -- 4.2.PreparationofSamplesandMaterialAnalyses -- 4.3.MechanicalTests -- 4.3.1.Four-PointBendingTest -- 4.3.2.Single-CycleContactTestUsingRollers -- 4.3.3.Single-CycleContactTestUsingSpheres -- 4.3.4.Multi-CycleContactTestUsingSpheres -- 4.3.5.Multi-cycleContactTestUsingSpheresandFour-PointBendingTest -- 4.3.6.ContactFatigueTest -- 5.ResultsandDiscussion -- 5.1.MicrostructuralAnalysis -- 5.2.MechanicalTests -- 5.2.1.Single-CycleContactTestUsingRollers -- 5.2.2.Single-CycleContactTestUsingSpheres -- 5.2.3.Multi-cycleContactTestUsingSpheres -- 5.2.4.Multi-cycleContactTestUsingSpheresandFour-PointBendingTest -- 5.2.5.ContactFatigueTest -- Acknowledgments -- References -- Chapter8NEWANALYTICALMODELOFTHERMALSTRESSESANDANALYTICALFRACTUREMECHANICSINTWO-COMPONENTMATERIALS.APPLICATIONTOTWO-COMPONENTCERAMICS -- Abstract -- 1.Introduction -- 1.1."Integration"and"Differential"Approaches -- 1.2.RealTwo-ComponentMaterial -- 1.3.MathematicalTechniques -- 1.4.AnalyticalFractureMechanics -- 2.CellModel.GeometricBoundaryConditionforCellMatrix -- 2.1.DeterminationofDistancerc -- 2.1.1.Intervals'∈0,ˇ/4, ∈0, ∗) -- 2.1.2.Intervals'∈0,ˇ/4, ∈ ∗,ˇ/2 -- 3.ThermalStressesinSolidContinuum -- 3.1.CoordinateSystemandRadialDisplacement -- 3.2.EquationsofSolidContinuumMechanics -- 3.3.SolutionofDifferentialEquationsforRadialDisplacement -- 3.4.ReasonofThermalStresses -- 4.BoundaryConditions -- 4.1.SphericalParticle -- 4.2.CellMatrix -- 5.ThermalStressesinIsotropicMulti-particle-matrixSystem -- 5.1.SphericalParticle -- 5.2.CellMatrix -- 5.3.RadialStressp -- 6.AnalyticalFractureMechanics -- 6.1.GeneralAnalysis -- 6.2.DeterminationofCurveIntegralWc.

6.2.1.DeterminationofFunctionfc -- 6.2.2.DeterminationofCurveIntegralsWcp(x12,R),Wcm1(x12,R),Wcm2(x12,R) -- 6.3.CrackInitiation -- 6.4.CrackPropagation -- 6.4.1.DeterminationofCrackTipPosition -- 6.4.2.CrackPropagationinSphericalParticle -- 6.4.3.CrackPropagationinCellMatrix -- 6.4.4.DeterminationofIntegrals -- 7.ApplicationtoTwo-ComponentCeramics -- Acknowledgments -- References -- Chapter 9FINITE ELEMENT THERMAL ANALYSISOF CERAMICS MATRIX COMPOSITES -- Abstract -- 1. Introduction -- 2. Ceramic Matrix Composites (CMCs) -- 2.1. Manufacturing of CMCs -- 2.1.1. Infiltration -- 2.1.2. Polymer Infiltration and Pyrolysis -- 2.2. Thermal Behaviour of CMCs -- 2.3. Experimental Measurements of Thermal Diffusivity -- 3. Modelling of a Plain Weave CMC -- 3.1. Manufacturing Process -- 3.2. Classes of Porosities -- 3.2.1. Inter-Fibre Micro-Porosity (Class A) -- 3.2.2. Trans-Tow Cracks (Class B Porosity) -- 3.2.3. Matrix Cracks (Class C Porosity) -- 3.2.4. Denuded Matrix Regions (Class D Porosity) -- 3.3. Quantification of Porosity -- 3.4. Thermal Transport Modelling of DLR-XT -- 3.4.1. Thermal Properties -- 3.4.2. Thermal Analysis of DLR-XT - Strategy and Results -- 4. Modelling of a Complex 8-Satin Weave CMC -- 4.1. Thermal Analysis -- 5. Computational Aspects -- 5.1. Parallel Processing -- Conclusions -- References -- Chapter 10DAMAGE REDUCTION METHODS IN DRILLINGPOLYMERIC MATRIX COMPOSITES -- Abstract -- Introduction -- Special Drills -- Drilling Conditions -- Process Parameters -- Conclusion -- References -- INDEX -- Blank Page.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.