ORPP logo
Image from Google Jackets

Symplectic Actions of 2-Tori on 4-Manifolds.

By: Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 2010Copyright date: ©2009Edition: 1st edDescription: 1 online resource (96 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470405731
Subject(s): Genre/Form: Additional physical formats: Print version:: Symplectic Actions of 2-Tori on 4-ManifoldsDDC classification:
  • 516.3/62
LOC classification:
  • QA649 -- .P453 2009eb
Online resources:
Contents:
Intro -- Contents -- Acknowledgements -- Chapter 1. Introduction -- Chapter 2. The orbit space -- 2.1. Symplectic form on the T-orbits -- 2.2. Stabilizer subgroup classification -- 2.3. Orbifold structure of M/T -- 2.4. A flat connection for the projection M M/T -- 2.5. Symplectic tube theorem -- Chapter 3. Global model -- 3.1. Orbifold coverings of M/T -- 3.2. Symplectic structure on M/T -- 3.3. Model of (M, ): Definition -- 3.4. Model of (M,): Proof -- Chapter 4. Global model up to equivariant diffeomorphisms -- 4.1. Generalization of Kahn's theorem -- 4.2. Smooth equivariant splittings -- 4.3. Alternative model -- Chapter 5. Classification: Free case -- 5.1. Monodromy invariant -- 5.2. Uniqueness -- 5.3. Existence -- 5.4. Classification theorem -- Chapter 6. Orbifold homology and geometric mappings -- 6.1. Geometric torsion in homology of orbifolds -- 6.2. Geometric isomorphisms -- 6.3. Symplectic and torsion geometric maps -- 6.4. Geometric isomorphisms: Characterization -- Chapter 7. Classification -- 7.1. Monodromy invariant -- 7.2. Uniqueness -- 7.3. Existence -- 7.4. Classification theorem -- Chapter 8. The four-dimensional classification -- 8.1. Two families of examples -- 8.2. Classification statement -- 8.3. Proof of Theorem 8.2.1 -- 8.4. Corollaries of Theorem 8.2.1 -- Chapter 9. Appendix: (sometimes symplectic) orbifolds -- 9.1. Bundles, connections -- 9.2. Coverings -- 9.3. Differential and symplectic forms -- 9.4. Orbifold homology, Hurewicz map -- 9.5. Classification of orbisurfaces -- Bibliography.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Acknowledgements -- Chapter 1. Introduction -- Chapter 2. The orbit space -- 2.1. Symplectic form on the T-orbits -- 2.2. Stabilizer subgroup classification -- 2.3. Orbifold structure of M/T -- 2.4. A flat connection for the projection M M/T -- 2.5. Symplectic tube theorem -- Chapter 3. Global model -- 3.1. Orbifold coverings of M/T -- 3.2. Symplectic structure on M/T -- 3.3. Model of (M, ): Definition -- 3.4. Model of (M,): Proof -- Chapter 4. Global model up to equivariant diffeomorphisms -- 4.1. Generalization of Kahn's theorem -- 4.2. Smooth equivariant splittings -- 4.3. Alternative model -- Chapter 5. Classification: Free case -- 5.1. Monodromy invariant -- 5.2. Uniqueness -- 5.3. Existence -- 5.4. Classification theorem -- Chapter 6. Orbifold homology and geometric mappings -- 6.1. Geometric torsion in homology of orbifolds -- 6.2. Geometric isomorphisms -- 6.3. Symplectic and torsion geometric maps -- 6.4. Geometric isomorphisms: Characterization -- Chapter 7. Classification -- 7.1. Monodromy invariant -- 7.2. Uniqueness -- 7.3. Existence -- 7.4. Classification theorem -- Chapter 8. The four-dimensional classification -- 8.1. Two families of examples -- 8.2. Classification statement -- 8.3. Proof of Theorem 8.2.1 -- 8.4. Corollaries of Theorem 8.2.1 -- Chapter 9. Appendix: (sometimes symplectic) orbifolds -- 9.1. Bundles, connections -- 9.2. Coverings -- 9.3. Differential and symplectic forms -- 9.4. Orbifold homology, Hurewicz map -- 9.5. Classification of orbisurfaces -- Bibliography.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.