ORPP logo
Image from Google Jackets

Sustainable Metal Extraction from Waste Streams.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2020Copyright date: ©2020Edition: 1st edDescription: 1 online resource (296 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783527826711
Subject(s): Genre/Form: Additional physical formats: Print version:: Sustainable Metal Extraction from Waste StreamsDDC classification:
  • 628.358
LOC classification:
  • TD195.M5 .C438 2020
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Graphical Abstract -- Preface -- Chapter 1 Introduction to Sustainability and Green Chemistry -- 1.1 Introduction -- 1.2 Defining "Sustainability" -- 1.3 Dimensions of Sustainability -- 1.4 New Conceptual Frameworks to Define Sustainability -- 1.4.1 Five Dimension Framework -- 1.4.2 Four Force Model -- 1.4.3 Corporate Sustainable Management -- 1.5 Green Value Stream Mapping (GVSM) -- 1.6 "Greening the Waste" -- 1.7 Green Chemistry Terminology -- 1.8 Green Ways of Metal Extraction: Core of the Book -- Chapter 2 Waste Handling and Pre‐treatment -- 2.1 Introduction -- 2.2 Waste Categorization -- 2.2.1 Waste Electrical and Electronic Equipment (WEEE) -- 2.2.2 Agro‐Residue Waste -- 2.2.3 Industrial Waste -- 2.3 Legislations and Regulations for Hazardous Wastes -- 2.4 Handling/Management of Hazardous Waste -- 2.4.1 Secured Landfilling -- 2.4.2 Incineration -- 2.4.3 Recycling of Hazardous Waste -- 2.5 A Call for Metal Recovery from Waste -- 2.5.1 Threat to Human Health and Environment -- 2.5.2 Waste: An Artificial Ore -- 2.5.3 "Waste" to Wealth -- 2.6 Pretreatment of Waste -- 2.6.1 Disassembling the Waste -- 2.6.2 Size Reduction (Comminution) -- 2.6.3 Screening/Sieving -- 2.6.4 Classification -- 2.6.5 Segregation -- 2.6.6 Calcination and Chemical Pretreatment -- 2.7 Summary and Outlook -- Chapter 3 Conventional Technologies for Metal Extraction from Waste -- 3.1 Introduction -- 3.2 Pyrometallurgical Operations -- 3.2.1 Pyrometallurgical Treatment of Industrial Waste -- 3.2.2 Pyrometallurgical Treatment of WEEE -- 3.2.3 Major Challenges Associated with Pyrometallurgical Operations -- 3.3 Hydrometallurgical Treatment of Waste -- 3.3.1 Leaching of Metals in Acidic Medium -- 3.3.2 Leaching of Metals in Alkali Medium -- 3.3.3 Leaching with Lixiviants (Cyanide, Thiourea, Thiosulfate) -- 3.3.4 Halide Leaching.
3.4 Summary and Outlook -- Chapter 4 Emerging Technology for Metal Extraction from Waste: I. Green Adsorption -- 4.1 Introduction -- 4.2 Adsorption -- 4.2.1 Hydrophilic Compounds -- 4.2.2 Hydrophobic Compounds -- 4.2.3 Polymer Matrix -- 4.3 Green Adsorption -- 4.4 Parameters Affecting the Adsorption Capacity of Green Adsorbents -- 4.4.1 Influence of pH -- 4.4.2 Influence of Temperature -- 4.4.3 Effect of Initial Concentration -- 4.4.4 Effect of Adsorbent Dosage -- 4.4.5 Effect of Co‐ions -- 4.5 Adsorption Kinetic Models -- 4.6 Mechanism of Metal Uptake -- 4.7 Green Adsorbents: Relevant Literature -- 4.7.1 Agricultural Resources -- 4.7.2 Zeolites -- 4.7.3 Clay -- 4.7.4 Industrial Waste -- 4.7.5 Modified Biopolymers -- 4.8 Innovative Applications of Adsorption -- 4.9 Case Study -- 4.10 Summary and Outlook -- Chapter 5 Emerging Technologies for Extraction of Metals from Waste II. Bioleaching -- 5.1 Introduction -- 5.2 Bioleaching Process Description -- 5.3 Factors Affecting the Process Efficiency -- 5.3.1 Types of Microorganisms -- 5.3.1.1 Mesophiles -- 5.3.1.2 Thermophiles -- 5.3.1.3 Heterotrophic Microbes -- 5.3.2 Affinity Between Microorganisms and Metal Surfaces -- 5.3.3 Physicochemical Factors -- 5.3.3.1 Surface Properties -- 5.3.3.2 Oxygen and Carbon Dioxide Content -- 5.3.3.3 pH Value of Solution -- 5.3.3.4 Temperature -- 5.3.3.5 Mineral Substrate -- 5.3.3.6 Surface Chemistry of Metals -- 5.3.3.7 Surfactant and Organic Extractants -- 5.3.4 Reactor Design -- 5.4 Mechanism of Bioleaching Process -- 5.4.1 Biochemical Reaction (Direct vs. Indirect) Mechanism -- 5.4.2 Mechanism of Metal Sulfide Dissolution (Polysulfide Pathway) -- 5.5 Engineering Practices in Bioleaching Process -- 5.5.1 Batch Process -- 5.5.2 Continuous Process -- 5.5.3 Hybrid Processes -- 5.6 Application of Bioleaching in Extracting Metals from Waste.
5.6.1 Extraction of Metals from WEEE -- 5.6.2 Extraction of Metals from Industrial Waste -- 5.6.3 Extraction of Metals from Mineral Waste -- 5.6.4 Extraction of Metals from Municipal Sewage Sludge -- 5.7 Technoeconomic Opportunities and Challenges -- 5.8 Summary and Outlook -- Chapter 6 Future Technology for Metal Extraction from Waste: I. Chelation Technology -- Abbreviations -- 6.1 Introduction -- 6.2 Defining "Chelation" -- 6.3 Classification of Ligands -- 6.4 Chemistry Associated with Chelation -- 6.4.1 Theories Derived for Metal-Ligand Complexation -- 6.4.2 Attributes of Metal Ions for Complexation -- 6.4.3 Metal-Chelate Complex Formation -- 6.4.4 The Chelate Effect -- 6.5 Chelation Process for Extraction of Metals -- 6.5.1 Framework for Chelating Agent Assisted Metal Extraction from Solid Waste -- 6.5.2 Process Parameters Affecting the Metal Extraction Process -- 6.5.2.1 Effect of Reaction pH -- 6.5.2.2 Effect of Molar Concentration of Chelating Agent -- 6.5.2.3 Effect of Reaction Temperature -- 6.5.2.4 Presence of Competing Ions in Reaction Zone -- 6.5.3 Factors Affecting Stability of Metal-Ligand Complex -- 6.6 Novel Applications of Chelating Agents -- 6.6.1 Chelating Agents Used for Metal Extraction from Metal‐Contaminated Soil -- 6.6.1.1 Hydrometallurgical Route of Chelation Process (Direct Use) -- 6.6.1.2 Phyto‐remediation of Soils in Presence of Chelating Agents -- 6.6.2 Chelating Agents Used for Metal Extraction from Industrial Waste -- 6.6.3 Chelating Agents Used for Metal Extraction from WEEE -- 6.7 Ecotoxicological Concerns and Biodegradability -- 6.8 Summary and Outlook -- Chapter 7 Future Technology for Metal Extraction from Waste: II. Ionic Liquids -- Abbreviation -- 7.1 Introduction -- 7.2 What Are Ionic Liquids? -- 7.3 Characteristic Properties of Ionic Liquids -- 7.3.1 Melting Point -- 7.3.2 Vapor Pressure and Nonflammability.
7.3.3 Thermal Stability -- 7.3.4 Density -- 7.3.5 Viscosity -- 7.3.6 Polarity -- 7.3.7 Coordination Ability -- 7.3.8 Conductivity -- 7.3.9 Solubility -- 7.4 Classification of Ionic Liquids -- 7.5 Environmental Scrutiny of Ionic Liquids -- 7.6 Applications of Ionic Liquids -- 7.6.1 Extraction of Metals from Aqueous Media -- 7.6.2 Extraction of Metals from Industrial Solid Waste/Ores -- 7.6.3 Extraction of Metals from WEEE -- 7.7 Summary and Outlook -- Chapter 8 Scale‐up Process for Metal Extraction from Solid Waste -- Nomenclature -- 8.1 Introduction -- 8.2 Process Intensification -- 8.3 Intensification of Metal Extraction Processes -- 8.3.1 Centrifugation -- 8.3.2 Liquid-Liquid Extraction -- 8.3.3 Mixing -- 8.3.4 Reactors -- 8.3.5 Comminution -- 8.3.6 Drying -- 8.4 Scaling Up from Batch to Continuous Process -- 8.4.1 Process Design Fabrication -- 8.4.2 Designing of Pilot Plant -- 8.4.2.1 Material Balance -- 8.4.2.2 Development of Comminution Circuit -- 8.4.3 Reactor Sizing and Agitator Selection -- 8.4.4 Design of Filtration System -- 8.4.5 Design of Heat Exchanger -- 8.4.6 Design of Precipitator Unit -- 8.4.7 Batch Scheduling -- 8.5 Summary and Outlook -- Chapter 9 Process Intensification for Micro‐flow Extraction: Batch to Continuous Process -- Abbreviations -- 9.1 Introduction -- 9.2 Miniaturized Extraction Devices -- 9.2.1 Intensification in Miniaturized Extraction Devices -- 9.2.2 Application of Miniaturized Extraction Devices -- 9.3 CFI for Continuous Micro‐flow Extraction -- 9.3.1 Designing CFI as an Extractor -- 9.3.2 Extraction Parameters -- 9.3.3 Methodology and Setup for Micro‐flow Extraction -- 9.3.4 Liquid-Liquid Micro‐flow Extraction -- 9.3.4.1 Typical Flow Patterns -- 9.3.4.2 Extraction Efficiency -- 9.3.4.3 Effect of Aqueous Phase Volume Fractions on Extraction Efficiency -- 9.3.5 Micro‐flow Extraction of Co and Ni.
9.3.5.1 Effect of pH -- 9.3.5.2 Effect of Residence Time -- 9.3.5.3 Effect of Extractant Concentration -- 9.4 Summary and Future Challenges -- Bibliography -- Index -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Graphical Abstract -- Preface -- Chapter 1 Introduction to Sustainability and Green Chemistry -- 1.1 Introduction -- 1.2 Defining "Sustainability" -- 1.3 Dimensions of Sustainability -- 1.4 New Conceptual Frameworks to Define Sustainability -- 1.4.1 Five Dimension Framework -- 1.4.2 Four Force Model -- 1.4.3 Corporate Sustainable Management -- 1.5 Green Value Stream Mapping (GVSM) -- 1.6 "Greening the Waste" -- 1.7 Green Chemistry Terminology -- 1.8 Green Ways of Metal Extraction: Core of the Book -- Chapter 2 Waste Handling and Pre‐treatment -- 2.1 Introduction -- 2.2 Waste Categorization -- 2.2.1 Waste Electrical and Electronic Equipment (WEEE) -- 2.2.2 Agro‐Residue Waste -- 2.2.3 Industrial Waste -- 2.3 Legislations and Regulations for Hazardous Wastes -- 2.4 Handling/Management of Hazardous Waste -- 2.4.1 Secured Landfilling -- 2.4.2 Incineration -- 2.4.3 Recycling of Hazardous Waste -- 2.5 A Call for Metal Recovery from Waste -- 2.5.1 Threat to Human Health and Environment -- 2.5.2 Waste: An Artificial Ore -- 2.5.3 "Waste" to Wealth -- 2.6 Pretreatment of Waste -- 2.6.1 Disassembling the Waste -- 2.6.2 Size Reduction (Comminution) -- 2.6.3 Screening/Sieving -- 2.6.4 Classification -- 2.6.5 Segregation -- 2.6.6 Calcination and Chemical Pretreatment -- 2.7 Summary and Outlook -- Chapter 3 Conventional Technologies for Metal Extraction from Waste -- 3.1 Introduction -- 3.2 Pyrometallurgical Operations -- 3.2.1 Pyrometallurgical Treatment of Industrial Waste -- 3.2.2 Pyrometallurgical Treatment of WEEE -- 3.2.3 Major Challenges Associated with Pyrometallurgical Operations -- 3.3 Hydrometallurgical Treatment of Waste -- 3.3.1 Leaching of Metals in Acidic Medium -- 3.3.2 Leaching of Metals in Alkali Medium -- 3.3.3 Leaching with Lixiviants (Cyanide, Thiourea, Thiosulfate) -- 3.3.4 Halide Leaching.

3.4 Summary and Outlook -- Chapter 4 Emerging Technology for Metal Extraction from Waste: I. Green Adsorption -- 4.1 Introduction -- 4.2 Adsorption -- 4.2.1 Hydrophilic Compounds -- 4.2.2 Hydrophobic Compounds -- 4.2.3 Polymer Matrix -- 4.3 Green Adsorption -- 4.4 Parameters Affecting the Adsorption Capacity of Green Adsorbents -- 4.4.1 Influence of pH -- 4.4.2 Influence of Temperature -- 4.4.3 Effect of Initial Concentration -- 4.4.4 Effect of Adsorbent Dosage -- 4.4.5 Effect of Co‐ions -- 4.5 Adsorption Kinetic Models -- 4.6 Mechanism of Metal Uptake -- 4.7 Green Adsorbents: Relevant Literature -- 4.7.1 Agricultural Resources -- 4.7.2 Zeolites -- 4.7.3 Clay -- 4.7.4 Industrial Waste -- 4.7.5 Modified Biopolymers -- 4.8 Innovative Applications of Adsorption -- 4.9 Case Study -- 4.10 Summary and Outlook -- Chapter 5 Emerging Technologies for Extraction of Metals from Waste II. Bioleaching -- 5.1 Introduction -- 5.2 Bioleaching Process Description -- 5.3 Factors Affecting the Process Efficiency -- 5.3.1 Types of Microorganisms -- 5.3.1.1 Mesophiles -- 5.3.1.2 Thermophiles -- 5.3.1.3 Heterotrophic Microbes -- 5.3.2 Affinity Between Microorganisms and Metal Surfaces -- 5.3.3 Physicochemical Factors -- 5.3.3.1 Surface Properties -- 5.3.3.2 Oxygen and Carbon Dioxide Content -- 5.3.3.3 pH Value of Solution -- 5.3.3.4 Temperature -- 5.3.3.5 Mineral Substrate -- 5.3.3.6 Surface Chemistry of Metals -- 5.3.3.7 Surfactant and Organic Extractants -- 5.3.4 Reactor Design -- 5.4 Mechanism of Bioleaching Process -- 5.4.1 Biochemical Reaction (Direct vs. Indirect) Mechanism -- 5.4.2 Mechanism of Metal Sulfide Dissolution (Polysulfide Pathway) -- 5.5 Engineering Practices in Bioleaching Process -- 5.5.1 Batch Process -- 5.5.2 Continuous Process -- 5.5.3 Hybrid Processes -- 5.6 Application of Bioleaching in Extracting Metals from Waste.

5.6.1 Extraction of Metals from WEEE -- 5.6.2 Extraction of Metals from Industrial Waste -- 5.6.3 Extraction of Metals from Mineral Waste -- 5.6.4 Extraction of Metals from Municipal Sewage Sludge -- 5.7 Technoeconomic Opportunities and Challenges -- 5.8 Summary and Outlook -- Chapter 6 Future Technology for Metal Extraction from Waste: I. Chelation Technology -- Abbreviations -- 6.1 Introduction -- 6.2 Defining "Chelation" -- 6.3 Classification of Ligands -- 6.4 Chemistry Associated with Chelation -- 6.4.1 Theories Derived for Metal-Ligand Complexation -- 6.4.2 Attributes of Metal Ions for Complexation -- 6.4.3 Metal-Chelate Complex Formation -- 6.4.4 The Chelate Effect -- 6.5 Chelation Process for Extraction of Metals -- 6.5.1 Framework for Chelating Agent Assisted Metal Extraction from Solid Waste -- 6.5.2 Process Parameters Affecting the Metal Extraction Process -- 6.5.2.1 Effect of Reaction pH -- 6.5.2.2 Effect of Molar Concentration of Chelating Agent -- 6.5.2.3 Effect of Reaction Temperature -- 6.5.2.4 Presence of Competing Ions in Reaction Zone -- 6.5.3 Factors Affecting Stability of Metal-Ligand Complex -- 6.6 Novel Applications of Chelating Agents -- 6.6.1 Chelating Agents Used for Metal Extraction from Metal‐Contaminated Soil -- 6.6.1.1 Hydrometallurgical Route of Chelation Process (Direct Use) -- 6.6.1.2 Phyto‐remediation of Soils in Presence of Chelating Agents -- 6.6.2 Chelating Agents Used for Metal Extraction from Industrial Waste -- 6.6.3 Chelating Agents Used for Metal Extraction from WEEE -- 6.7 Ecotoxicological Concerns and Biodegradability -- 6.8 Summary and Outlook -- Chapter 7 Future Technology for Metal Extraction from Waste: II. Ionic Liquids -- Abbreviation -- 7.1 Introduction -- 7.2 What Are Ionic Liquids? -- 7.3 Characteristic Properties of Ionic Liquids -- 7.3.1 Melting Point -- 7.3.2 Vapor Pressure and Nonflammability.

7.3.3 Thermal Stability -- 7.3.4 Density -- 7.3.5 Viscosity -- 7.3.6 Polarity -- 7.3.7 Coordination Ability -- 7.3.8 Conductivity -- 7.3.9 Solubility -- 7.4 Classification of Ionic Liquids -- 7.5 Environmental Scrutiny of Ionic Liquids -- 7.6 Applications of Ionic Liquids -- 7.6.1 Extraction of Metals from Aqueous Media -- 7.6.2 Extraction of Metals from Industrial Solid Waste/Ores -- 7.6.3 Extraction of Metals from WEEE -- 7.7 Summary and Outlook -- Chapter 8 Scale‐up Process for Metal Extraction from Solid Waste -- Nomenclature -- 8.1 Introduction -- 8.2 Process Intensification -- 8.3 Intensification of Metal Extraction Processes -- 8.3.1 Centrifugation -- 8.3.2 Liquid-Liquid Extraction -- 8.3.3 Mixing -- 8.3.4 Reactors -- 8.3.5 Comminution -- 8.3.6 Drying -- 8.4 Scaling Up from Batch to Continuous Process -- 8.4.1 Process Design Fabrication -- 8.4.2 Designing of Pilot Plant -- 8.4.2.1 Material Balance -- 8.4.2.2 Development of Comminution Circuit -- 8.4.3 Reactor Sizing and Agitator Selection -- 8.4.4 Design of Filtration System -- 8.4.5 Design of Heat Exchanger -- 8.4.6 Design of Precipitator Unit -- 8.4.7 Batch Scheduling -- 8.5 Summary and Outlook -- Chapter 9 Process Intensification for Micro‐flow Extraction: Batch to Continuous Process -- Abbreviations -- 9.1 Introduction -- 9.2 Miniaturized Extraction Devices -- 9.2.1 Intensification in Miniaturized Extraction Devices -- 9.2.2 Application of Miniaturized Extraction Devices -- 9.3 CFI for Continuous Micro‐flow Extraction -- 9.3.1 Designing CFI as an Extractor -- 9.3.2 Extraction Parameters -- 9.3.3 Methodology and Setup for Micro‐flow Extraction -- 9.3.4 Liquid-Liquid Micro‐flow Extraction -- 9.3.4.1 Typical Flow Patterns -- 9.3.4.2 Extraction Efficiency -- 9.3.4.3 Effect of Aqueous Phase Volume Fractions on Extraction Efficiency -- 9.3.5 Micro‐flow Extraction of Co and Ni.

9.3.5.1 Effect of pH -- 9.3.5.2 Effect of Residence Time -- 9.3.5.3 Effect of Extractant Concentration -- 9.4 Summary and Future Challenges -- Bibliography -- Index -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.