ORPP logo
Image from Google Jackets

Power-Switching Converters.

By: Contributor(s): Material type: TextTextPublisher: Milton : Taylor & Francis Group, 2010Copyright date: ©2011Edition: 3rd edDescription: 1 online resource (654 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781439891155
Subject(s): Genre/Form: Additional physical formats: Print version:: Power-Switching ConvertersDDC classification:
  • 621.31/3
LOC classification:
  • TK7881.15 .A54 2011
Online resources:
Contents:
Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- List of Figures -- List of Tables -- Preface -- 1: Introduction to Switching Converters -- 1.1 Introduction -- 1.1.1 Industry trends -- 1.2 Linear converter -- 1.2.1 Linear series-pass regulator -- 1.2.2 Linear shunt regulator -- 1.3 Switching converters -- 1.3.1 Basic switching converter with resistive load -- 1.3.2 Basic switching converter with RL load -- 1.4 Principles of steady-state converter analysis -- 1.4.1 Inductor volt-second balance -- 1.4.2 Capacitor charge balance -- 1.5 Problems -- 2: Basic Switching Converter Topologies -- 2.1 Introduction -- 2.2 Buck converter -- 2.2.1 Continuous mode -- 2.2.2 Discontinuous mode -- 2.3 Synchronous rectifier -- 2.4 Ripple steering -- 2.5 Boost converter -- 2.5.1 Continuous mode -- 2.5.2 Discontinuous mode -- 2.6 Buck-boost converter -- 2.6.1 Continuous mode -- 2.6.2 Discontinuous mode -- 2.7 Cûk converter -- 2.8 SEPIC converter -- 2.8.1 Continuous conduction mode -- 2.8.2 Design considerations -- 2.9 Zeta converter -- 2.10 Converter realization with nonideal components -- 2.10.1 Inductor model -- 2.10.2 Capacitor model -- 2.10.3 Semiconductor losses -- 2.10.4 Effect of semiconductor losses on the output voltage -- 2.11 Problems -- 3: Resonant Converters -- 3.1 Introduction -- 3.2 Parallel resonant circuit-A review -- 3.3 Series resonant circuit-A review -- 3.4 Classification of quasi-resonant switches -- 3.5 Zero-current-switching quasi-resonant buck converter -- 3.6 Zero-current-switching quasi-resonant boost converter -- 3.7 Zero-voltage-switching quasi-resonant buck converter -- 3.8 Zero-voltage-switching quasi-resonant boost converter -- 3.9 Series-loaded resonant converter -- 3.9.1 Discontinuous mode (0 &lt -- fs &lt -- 0.5fn) -- 3.9.2 Continuous mode (fs &gt -- fn or above-resonant mode).
3.9.3 Continuous mode (0.5fn &lt -- fs &lt -- fn or below-resonant mode) -- 3.10 Parallel-loaded resonant converter -- 3.10.1 Discontinuous mode (0 &lt -- f &lt -- 0.5fn) -- 3.10.2 Continuous mode (fs &gt -- f2 or above-resonant mode) -- 3.10.3 Continuous mode (0.5fn &lt -- fs &lt -- fn or below-resonant mode) -- 3.11 Problems -- 4: Isolated Switching Converters -- 4.1 Introduction -- 4.2 Forward converter -- 4.3 Two-switch forward converter -- 4.4 Push-pull converter -- 4.5 Half-bridge switching converter -- 4.6 Full-bridge switching converter -- 4.7 Flyback converter -- 4.8 Two-switch flyback converter -- 4.9 Dual active bridge converter -- 4.9.1 Power flow control -- 4.10 Zero-current-switching quasi-resonant half-bridge converter -- 4.11 Problems -- 5: Control Schemes of Switching Converters -- 5.1 Introduction -- 5.2 Pulse-width modulation -- 5.2.1 Voltage-mode PWM scheme -- 5.2.2 Current-mode PWM scheme -- 5.2.2.1 Instability for D&gt -- 50% -- 5.2.2.2 Compensation with external ramp -- 5.3 Hysteresis control: switching current source -- 5.3.1 Steady-state analysis during ton -- 5.4 Commercial integrated circuit controllers -- 5.4.1 Fixed-frequency voltage-mode SG3524 controller -- 5.4.2 Variable-frequency voltage-mode TL497 controller -- 5.4.3 Fixed-frequency current-mode UC3842 PWM controller -- 5.4.4 TinySwitch-II family of low power off-line switchers -- 5.5 Control schemes for resonant converters -- 5.5.1 Off-line controllers for resonant converters -- 5.5.2 L6598 operation -- 5.6 Problems -- 6: Continuous-Time Modeling of Switching Converters -- 6.1 Introduction -- 6.2 Switching converter analysis using classical control techniques -- 6.2.1 Basic linear model of the open-loop switching converter -- 6.2.2 PWMmodulatormodel -- 6.2.3 Averaged switching converter models -- 6.2.4 Output filter model.
6.3 Summary of small-signal models of switching converters -- 6.4 Linear model of the voltage regulator including external perturbances -- 6.4.1 Output impedance and stability -- 6.5 State-space representation of switching converters -- 6.5.1 Review of linear systemanalysis -- 6.5.2 State-space averaging -- 6.6 Switching converter transfer functions -- 6.6.1 Source-to-state transfer functions -- 6.7 Input EMI filters -- 6.7.1 Stability considerations -- 6.8 Problems -- 7: Analog Control of Switching Converters -- 7.1 Introduction -- 7.2 Review of negative feedback using classical-control techniques -- 7.2.1 Closed-loop gain -- 7.2.2 Stability analysis -- 7.2.3 Relative stability -- 7.3 Linear model of the closed-loop switching converter -- 7.3.1 Feedback network -- 7.3.2 Error amplifier compensation networks -- 7.3.3 PI compensation network -- 7.3.4 PID compensation network -- 7.3.5 Proportional control -- 7.4 Feedback compensation in a buck converter with output capacitor ESR -- 7.5 Feedback compensation in a buck converter with no output capacitor ESR -- 7.6 Complete state feedback -- 7.6.1 Design of a control system with complete state feedback -- 7.6.2 Pole selection -- 7.6.3 Feedback gains -- 7.7 Problems -- 8: Discrete-Time Modeling of Switching Converters -- 8.1 Introduction -- 8.2 Continuous-time systems -- 8.3 Direct discretemodel -- 8.4 Linear direct discretemodel -- 8.5 Continuous-time averaged state-space model -- 8.6 Averaged discrete-time model of the switching converter -- 8.7 Problems -- 9: Digital Control of Switching Converters -- 9.1 Introduction -- 9.2 Proportional controller -- 9.3 Digital redesign of a PID controller -- 9.4 Design of a discrete control system with complete state feedback -- 9.4.1 Pole selection -- 9.4.2 Feedback gains -- 9.4.3 Voltagemode control -- 9.4.4 Currentmode control -- 9.5 Problems.
10: Interleaved Converters -- 10.1 Introduction -- 10.2 Interleaved buck converter -- 10.2.1 State-space averagedmodel -- 10.3 Interleaved boost converter -- 10.3.1 State-space averagedmodel -- 10.4 Interleaved converter operation based on current mode -- 10.4.1 Ripple calculations -- 10.4.2 Number of converters -- 10.5 Power factor correction -- 10.6 Problems -- 11: Switched Capacitor Converters -- 11.1 Introduction -- 11.2 Unidirectional power flow SCC -- 11.2.1 Basic step-up converter -- 11.2.2 Basic step-down converter -- 11.2.3 Basic inverting converter -- 11.3 Alternative switched capacitor converter topologies -- 11.3.1 Step-down converter -- 11.3.2 Step-up converter -- 11.3.3 n-Stage step-down SCC -- 11.3.4 n-Stage step-up SCC -- 11.4 Bi-directional power flow SCC -- 11.4.1 Step-up step-down converter -- 11.4.2 Luo converter -- 11.5 Resonant converters -- 11.5.1 Zero-current switching -- 11.6 Losses on switched-capacitor power converters -- 11.7 Problems -- 12: Simulation of Switching Converters -- 12.1 Introduction -- 12.2 SPICE® circuit representation -- 12.2.1 PSPICE simulations using .CIR -- 12.2.2 PSPICE simulations using schematics entry -- 12.2.3 Small-signal analysis of switching converters -- 12.2.4 Creating capture symbols for PSPICE simulation -- 12.2.5 Solving convergence problems -- 12.3 Switching converter simulation using MATLAB® -- 12.3.1 Working with transfer functions -- 12.3.2 Working with matrices -- 12.4 Switching converter simulation using Simulink® -- 12.4.1 Transfer function example using Simulink® -- 12.4.2 State-space example using Simulink® -- 12.5 Problems -- 13: Applications of Switching Converters -- 13.1 Power factor correction -- 13.1.1 Introduction -- 13.1.2 Review of basic concepts -- 13.1.3 Principle of power factor correction -- 13.1.4 Self-power factor correction properties of switching converters.
13.1.4.1 Buck converter -- 13.1.4.2 Boost converter -- 13.1.4.3 Buck-boost converter -- 13.1.4.4 Flyback converter -- 13.1.5 Control techniques for power factor correctors -- 13.1.5.1 Peak current mode control (PCM) -- 13.1.5.2 Average current mode control -- 13.1.5.3 Hysteresis control -- 13.1.5.4 Borderline or boundary control -- 13.1.5.5 Discontinuous current PWM control -- 13.1.6 Power factor correction circuits -- 13.2 Low noise DC-DC converters -- 13.2.1 Introduction -- 13.2.2 Techniques to reduce EMI -- 13.2.2.1 Capacitive coupling -- 13.2.2.2 Inductive coupling -- 13.2.2.3 Input filtering -- 13.2.2.4 Output Filtering -- 13.2.2.5 Slew rate limiting -- 13.3 Switching converters for solar cells -- 13.3.1 Introduction -- 13.3.2 Solar cellmodel -- 13.3.3 Maximum-power point tracking -- 13.3.4 Switching converters for solar cells -- 13.4 Switching converters for fuel cells -- 13.5 Switching converters for LED drivers -- 13.5.1 Buck-based LED drivers -- 13.5.2 Boost-based LED drivers -- 13.5.3 Cûk-based LED drivers -- 13.5.4 SEPIC-based LED drivers -- 13.5.5 LED drivers for AC input -- 14: Switching Converter Design Case Studies -- 14.1 Introduction -- 14.2 Voltage-mode discontinuous-conduction-mode buck converter design -- 14.2.1 Controller design -- 14.2.2 Small-signalmodel -- 14.2.3 Design of the compensation network and error amplifier -- 14.2.4 The closed-loop buck converter -- 14.2.5 Simulation results -- 14.2.6 Experimental results -- 14.3 Digital control of a voltage-mode synchronous buck converter -- 14.3.1 Circuit parameters -- 14.3.2 Closed-loop pole selection -- 14.3.3 Discrete-time model -- 14.3.4 Feedback gains -- 14.3.5 Control strategy -- 14.3.6 Analog model for PSPICE simulations -- 14.3.7 Simulation results -- 14.3.8 Sensitivity of the closed-loop poles -- 14.3.9 Experimental results.
14.4 Digital control of a current-mode synchronous buck converter.
Summary: Many advances have emerged since the second edition of this volume. This third edition explores the advent of LED drivers and DC-DC converters both for solar panels and for fuel cells. It covers converter power management, phase-shift PWM, and low-noise and bidirectional DC-DC converters, featuring a non-linear discrete model of the DC-DC converter itself. The text discusses new simulation tools such as PSIM, LTSPICE, and POWERESIM, and provides additional and updated information on digital control of DC-DC converters, switched capacitor converters, and power factor controllers.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- List of Figures -- List of Tables -- Preface -- 1: Introduction to Switching Converters -- 1.1 Introduction -- 1.1.1 Industry trends -- 1.2 Linear converter -- 1.2.1 Linear series-pass regulator -- 1.2.2 Linear shunt regulator -- 1.3 Switching converters -- 1.3.1 Basic switching converter with resistive load -- 1.3.2 Basic switching converter with RL load -- 1.4 Principles of steady-state converter analysis -- 1.4.1 Inductor volt-second balance -- 1.4.2 Capacitor charge balance -- 1.5 Problems -- 2: Basic Switching Converter Topologies -- 2.1 Introduction -- 2.2 Buck converter -- 2.2.1 Continuous mode -- 2.2.2 Discontinuous mode -- 2.3 Synchronous rectifier -- 2.4 Ripple steering -- 2.5 Boost converter -- 2.5.1 Continuous mode -- 2.5.2 Discontinuous mode -- 2.6 Buck-boost converter -- 2.6.1 Continuous mode -- 2.6.2 Discontinuous mode -- 2.7 Cûk converter -- 2.8 SEPIC converter -- 2.8.1 Continuous conduction mode -- 2.8.2 Design considerations -- 2.9 Zeta converter -- 2.10 Converter realization with nonideal components -- 2.10.1 Inductor model -- 2.10.2 Capacitor model -- 2.10.3 Semiconductor losses -- 2.10.4 Effect of semiconductor losses on the output voltage -- 2.11 Problems -- 3: Resonant Converters -- 3.1 Introduction -- 3.2 Parallel resonant circuit-A review -- 3.3 Series resonant circuit-A review -- 3.4 Classification of quasi-resonant switches -- 3.5 Zero-current-switching quasi-resonant buck converter -- 3.6 Zero-current-switching quasi-resonant boost converter -- 3.7 Zero-voltage-switching quasi-resonant buck converter -- 3.8 Zero-voltage-switching quasi-resonant boost converter -- 3.9 Series-loaded resonant converter -- 3.9.1 Discontinuous mode (0 &lt -- fs &lt -- 0.5fn) -- 3.9.2 Continuous mode (fs &gt -- fn or above-resonant mode).

3.9.3 Continuous mode (0.5fn &lt -- fs &lt -- fn or below-resonant mode) -- 3.10 Parallel-loaded resonant converter -- 3.10.1 Discontinuous mode (0 &lt -- f &lt -- 0.5fn) -- 3.10.2 Continuous mode (fs &gt -- f2 or above-resonant mode) -- 3.10.3 Continuous mode (0.5fn &lt -- fs &lt -- fn or below-resonant mode) -- 3.11 Problems -- 4: Isolated Switching Converters -- 4.1 Introduction -- 4.2 Forward converter -- 4.3 Two-switch forward converter -- 4.4 Push-pull converter -- 4.5 Half-bridge switching converter -- 4.6 Full-bridge switching converter -- 4.7 Flyback converter -- 4.8 Two-switch flyback converter -- 4.9 Dual active bridge converter -- 4.9.1 Power flow control -- 4.10 Zero-current-switching quasi-resonant half-bridge converter -- 4.11 Problems -- 5: Control Schemes of Switching Converters -- 5.1 Introduction -- 5.2 Pulse-width modulation -- 5.2.1 Voltage-mode PWM scheme -- 5.2.2 Current-mode PWM scheme -- 5.2.2.1 Instability for D&gt -- 50% -- 5.2.2.2 Compensation with external ramp -- 5.3 Hysteresis control: switching current source -- 5.3.1 Steady-state analysis during ton -- 5.4 Commercial integrated circuit controllers -- 5.4.1 Fixed-frequency voltage-mode SG3524 controller -- 5.4.2 Variable-frequency voltage-mode TL497 controller -- 5.4.3 Fixed-frequency current-mode UC3842 PWM controller -- 5.4.4 TinySwitch-II family of low power off-line switchers -- 5.5 Control schemes for resonant converters -- 5.5.1 Off-line controllers for resonant converters -- 5.5.2 L6598 operation -- 5.6 Problems -- 6: Continuous-Time Modeling of Switching Converters -- 6.1 Introduction -- 6.2 Switching converter analysis using classical control techniques -- 6.2.1 Basic linear model of the open-loop switching converter -- 6.2.2 PWMmodulatormodel -- 6.2.3 Averaged switching converter models -- 6.2.4 Output filter model.

6.3 Summary of small-signal models of switching converters -- 6.4 Linear model of the voltage regulator including external perturbances -- 6.4.1 Output impedance and stability -- 6.5 State-space representation of switching converters -- 6.5.1 Review of linear systemanalysis -- 6.5.2 State-space averaging -- 6.6 Switching converter transfer functions -- 6.6.1 Source-to-state transfer functions -- 6.7 Input EMI filters -- 6.7.1 Stability considerations -- 6.8 Problems -- 7: Analog Control of Switching Converters -- 7.1 Introduction -- 7.2 Review of negative feedback using classical-control techniques -- 7.2.1 Closed-loop gain -- 7.2.2 Stability analysis -- 7.2.3 Relative stability -- 7.3 Linear model of the closed-loop switching converter -- 7.3.1 Feedback network -- 7.3.2 Error amplifier compensation networks -- 7.3.3 PI compensation network -- 7.3.4 PID compensation network -- 7.3.5 Proportional control -- 7.4 Feedback compensation in a buck converter with output capacitor ESR -- 7.5 Feedback compensation in a buck converter with no output capacitor ESR -- 7.6 Complete state feedback -- 7.6.1 Design of a control system with complete state feedback -- 7.6.2 Pole selection -- 7.6.3 Feedback gains -- 7.7 Problems -- 8: Discrete-Time Modeling of Switching Converters -- 8.1 Introduction -- 8.2 Continuous-time systems -- 8.3 Direct discretemodel -- 8.4 Linear direct discretemodel -- 8.5 Continuous-time averaged state-space model -- 8.6 Averaged discrete-time model of the switching converter -- 8.7 Problems -- 9: Digital Control of Switching Converters -- 9.1 Introduction -- 9.2 Proportional controller -- 9.3 Digital redesign of a PID controller -- 9.4 Design of a discrete control system with complete state feedback -- 9.4.1 Pole selection -- 9.4.2 Feedback gains -- 9.4.3 Voltagemode control -- 9.4.4 Currentmode control -- 9.5 Problems.

10: Interleaved Converters -- 10.1 Introduction -- 10.2 Interleaved buck converter -- 10.2.1 State-space averagedmodel -- 10.3 Interleaved boost converter -- 10.3.1 State-space averagedmodel -- 10.4 Interleaved converter operation based on current mode -- 10.4.1 Ripple calculations -- 10.4.2 Number of converters -- 10.5 Power factor correction -- 10.6 Problems -- 11: Switched Capacitor Converters -- 11.1 Introduction -- 11.2 Unidirectional power flow SCC -- 11.2.1 Basic step-up converter -- 11.2.2 Basic step-down converter -- 11.2.3 Basic inverting converter -- 11.3 Alternative switched capacitor converter topologies -- 11.3.1 Step-down converter -- 11.3.2 Step-up converter -- 11.3.3 n-Stage step-down SCC -- 11.3.4 n-Stage step-up SCC -- 11.4 Bi-directional power flow SCC -- 11.4.1 Step-up step-down converter -- 11.4.2 Luo converter -- 11.5 Resonant converters -- 11.5.1 Zero-current switching -- 11.6 Losses on switched-capacitor power converters -- 11.7 Problems -- 12: Simulation of Switching Converters -- 12.1 Introduction -- 12.2 SPICE® circuit representation -- 12.2.1 PSPICE simulations using .CIR -- 12.2.2 PSPICE simulations using schematics entry -- 12.2.3 Small-signal analysis of switching converters -- 12.2.4 Creating capture symbols for PSPICE simulation -- 12.2.5 Solving convergence problems -- 12.3 Switching converter simulation using MATLAB® -- 12.3.1 Working with transfer functions -- 12.3.2 Working with matrices -- 12.4 Switching converter simulation using Simulink® -- 12.4.1 Transfer function example using Simulink® -- 12.4.2 State-space example using Simulink® -- 12.5 Problems -- 13: Applications of Switching Converters -- 13.1 Power factor correction -- 13.1.1 Introduction -- 13.1.2 Review of basic concepts -- 13.1.3 Principle of power factor correction -- 13.1.4 Self-power factor correction properties of switching converters.

13.1.4.1 Buck converter -- 13.1.4.2 Boost converter -- 13.1.4.3 Buck-boost converter -- 13.1.4.4 Flyback converter -- 13.1.5 Control techniques for power factor correctors -- 13.1.5.1 Peak current mode control (PCM) -- 13.1.5.2 Average current mode control -- 13.1.5.3 Hysteresis control -- 13.1.5.4 Borderline or boundary control -- 13.1.5.5 Discontinuous current PWM control -- 13.1.6 Power factor correction circuits -- 13.2 Low noise DC-DC converters -- 13.2.1 Introduction -- 13.2.2 Techniques to reduce EMI -- 13.2.2.1 Capacitive coupling -- 13.2.2.2 Inductive coupling -- 13.2.2.3 Input filtering -- 13.2.2.4 Output Filtering -- 13.2.2.5 Slew rate limiting -- 13.3 Switching converters for solar cells -- 13.3.1 Introduction -- 13.3.2 Solar cellmodel -- 13.3.3 Maximum-power point tracking -- 13.3.4 Switching converters for solar cells -- 13.4 Switching converters for fuel cells -- 13.5 Switching converters for LED drivers -- 13.5.1 Buck-based LED drivers -- 13.5.2 Boost-based LED drivers -- 13.5.3 Cûk-based LED drivers -- 13.5.4 SEPIC-based LED drivers -- 13.5.5 LED drivers for AC input -- 14: Switching Converter Design Case Studies -- 14.1 Introduction -- 14.2 Voltage-mode discontinuous-conduction-mode buck converter design -- 14.2.1 Controller design -- 14.2.2 Small-signalmodel -- 14.2.3 Design of the compensation network and error amplifier -- 14.2.4 The closed-loop buck converter -- 14.2.5 Simulation results -- 14.2.6 Experimental results -- 14.3 Digital control of a voltage-mode synchronous buck converter -- 14.3.1 Circuit parameters -- 14.3.2 Closed-loop pole selection -- 14.3.3 Discrete-time model -- 14.3.4 Feedback gains -- 14.3.5 Control strategy -- 14.3.6 Analog model for PSPICE simulations -- 14.3.7 Simulation results -- 14.3.8 Sensitivity of the closed-loop poles -- 14.3.9 Experimental results.

14.4 Digital control of a current-mode synchronous buck converter.

Many advances have emerged since the second edition of this volume. This third edition explores the advent of LED drivers and DC-DC converters both for solar panels and for fuel cells. It covers converter power management, phase-shift PWM, and low-noise and bidirectional DC-DC converters, featuring a non-linear discrete model of the DC-DC converter itself. The text discusses new simulation tools such as PSIM, LTSPICE, and POWERESIM, and provides additional and updated information on digital control of DC-DC converters, switched capacitor converters, and power factor controllers.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.