Engineered Ceramics : Current Status and Future Prospects.
Material type:
- text
- computer
- online resource
- 9781119100416
- 620.14
- TA455.C43 -- .E545 2016eb
Intro -- Engineered Ceramics -- Contents -- Preface -- List of Contributors -- Part 1 Materials Design and Characterization -- 1 An Introduction to Materials by Design Including a Dynamic Stress Environment -- 1.1 Introduction -- 1.2 Crystal Structure Microstructure Macrostructure Property Relationships -- 1.3 Scope of Manuscript -- 1.4 Characterization of Materials and Unique Signatures at Multiple Scales -- 1.5 Historical Emergence of Materials by Design -- 1.6 Selected Examples of MbD in Quasi-Static Mechanical Environments -- 1.7 Total Energy Dissipation f (Atomic Mechanisms + Micro-Material Mechanisms + Macro-Material Mechanisms) -- 1.8 Influence of MbD on Strategic Basic Research -- 1.9 The Army Research Laboratory Materials in Extreme Dynamic Environments Program -- Acknowledgments -- References -- 2 Custom Mechanical Strength Test Specimens for Brittle Materials and Their Components -- 2.1 Introduction -- 2.2 Examples of Custom Mechanical Test Methods -- 2.2.1 The C-Sphere Specimen and Exterior Tangential Tension -- 2.2.2 The Sectored Flexure Specimen and Outer-Diameter Axial Tension -- 2.2.3 Serpentine or Many-Point Flexure Bend Testing and Axial Tension -- 2.2.4 Anticlastic Bend Testing and Edge-Located Tension -- 2.2.5 Small Bend Bars and Axial Tension -- 2.2.6 Concurrent Electric Field and Biaxial Tension -- 2.2.7 Laser Shock or Laser Spall and Bulk Intrinsic Tension -- 2.3 Summary -- Acknowledgments -- References -- 3 Applicability of Probabilistic Analyses to Assess the Structural Reliability of Materials and Components for Solid-Oxide Fuel Cells -- 3.1 Introduction -- 3.2 Experimental -- 3.2.1 Materials -- 3.2.2 Testing -- 3.3 Results, Analysis, and Discussion -- 3.4 Summary and Conclusions -- Acknowledgments -- References -- 4 Failure of Ion-Conducting Materials by Internal Precipitation Under Electrolytic Conditions.
4.1 Introduction -- 4.2 Ceramic Materials with Ion-Conducting Properties -- 4.3 Nature of Electrolyte Failures -- 4.4 A Schematic of How to Introduce Local Pressure on a Crack Surface -- 4.5 Electrochemical Precipitation of Oxygen -- 4.6 The Occurrence of Cracks at Multiple Locations Under Electrolytic Conditions: Distinction from Fracture Under Remote Load -- 4.7 Precipitation in Cation Conductors -- 4.8 Summary -- References -- Part 2 Advanced Ceramics and Ceramic Matrix Composites -- 5 Silicon Nitride Ceramics -- 5.1 Introduction -- 5.2 Crystal Structure and Transformations -- 5.3 Silicon Nitride Powder Precursors -- 5.4 Sintering and Microstructural Development -- 5.5 Sialon Ceramics -- 5.6 Oxynitride Glasses -- 5.7 Microstructure-Property Relationships in Silicon Nitride-Based Ceramics -- 5.8 Summary -- References -- 6 Microstructural Evolution and Mechanical/Thermal Properties of Silicon Nitride Ceramics -- 6.1 Introduction -- 6.2 Fracture Strength and Fracture Toughness -- 6.2.1 Grain Morphology Control -- 6.2.2 Fibrous Grain Alignment Control -- 6.2.3 Grain Boundary Control -- 6.2.4 Porous Structure Control -- 6.3 Thermal Conductivity -- 6.3.1 Approaches for High Thermal Conductivity -- 6.3.2 Fracture Resistance of High-Thermal-Conductivity Silicon Nitride -- References -- 7 Silicon Nitride Ceramics for Tribological Applications -- 7.1 Introduction -- 7.2 Structures and Properties of Si3N4 -- 7.3 Si3N4 Powder As Raw Materials -- 7.4 Historical Background of Si3N4 Ceramics -- 7.5 Progress of Sintering Techniques for Si3N4 -- 7.5.1 Hot-Pressing of Si3N4 with MgO -- 7.5.2 High-Strength Si3N4 Ceramics by Y2O3 Addition -- 7.5.3 Highly Reliable Si3N4 Ceramics by the Addition of TiO2 [21, 22] -- 7.5.4 Fabrication of Nano-Size TiN Dispersed Si3N4 Ceramics Using Mechano-Chemical Dry Mixing Technique.
7.6 Bearing and Other Tribological Applications [11, 12] -- Acknowledgments -- References -- 8 SiC-Matrix Composites: Tough Ceramics for Thermostructural Application in Different Fields* -- 8.1 Introduction -- 8.2 Processing -- 8.3 Material Design -- 8.4 Selectected Properties -- 8.4.1 Mechanical Behavior -- 8.4.2 Thermal Conductivity -- 8.4.3 Oxidation Resistance -- 8.4.4 Effect of Nuclear Irradiation -- 8.5 Representative Applications -- 8.5.1 Space and Aeronautic Field -- 8.6 Conclusion -- References -- 9 Life-Limiting Behavior and Life Management of SiC-Based Composites -- 9.1 Introduction -- 9.2 SiC-Based Composites -- 9.2.1 Nature of Degradation -- 9.2.2 Sources of Cracking -- 9.2.3 Intermediate Temperature Oxidation -- 9.2.4 Fatigue Mechanisms -- 9.2.5 Fatigue and Environmental Degradation -- 9.2.6 Environmental Barrier Coatings -- 9.2.7 End of Life -- 9.2.8 Design for Life -- 9.3 Concluding Remarks -- References -- 10 Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composite Turbine Components -- 10.1 Introduction -- 10.2 Nasa EBC Technology Evolutions -- 10.3 The Nasa 3000°F (1650°C) Environmental Barrier Coating Systems -- 10.4 Advanced 2700°F EBC Bond Coat Development -- 10.5 The Nasa Turbine Airfoil and Combustor Environmental Barrier Coatings -- 10.6 Long-Term Thermomechnical Durability Testing of Advanced Ebc-Cmcs -- 10.7 Concluding Remarks -- Acknowledgments -- References -- 11 Carbon Composites With Controlled Microstructures -- 11.1 Introduction -- 11.1.1 Historical Evolutions in Carbon Materials -- 11.2 Carbon Structures -- 11.3 Nanocarbons -- 11.4 Carbon Composite Materials -- 11.4.1 Carbon/Fiber-Reinforced Carbon Composites -- 11.4.2 Macro-Microstructure of C/C -- 11.4.3 Fiber Microstructure -- 11.4.4 Matrix Microstructure -- 11.4.5 Properties -- 11.4.6 Mechanical Properties of C/C Composites.
11.4.7 Thermal Conductivity -- 11.5 Conclusion -- References -- 12 Thermal Protection Materials and Systems: An Overview -- 12.1 Introduction -- 12.2 Sources of Heating -- 12.3 Types and Selection of TPS -- 12.4 Recent Advances in Reusable TPS -- 12.5 Recent Advances in Ablative TPS -- 12.5.1 AVCOAT -- 12.5.2 PICA -- 12.6 Conformable and Flexible Ablators TPS -- 12.7 Woven TPS -- 12.8 Ultra-High Temperature Ceramics -- 12.9 Future Materials -- 12.10 Modeling and Computation -- 12.11 Characterization and Testing -- 12.12 Summary and Conclusion -- Acknowledgments -- References -- Part 3 Novel Ceramic Processing and Integration Technologies -- 13 Progress in Advanced Ceramics Research Enabled By Novel Processing and Materials Technologies -- 13.1 Introduction -- 13.2 Novel Synthesis: HIP and SHS -- 13.3 Functionally Graded Materials -- 13.4 Freeform Fabrication of Ceramics -- 13.5 Summary -- Acknowledgments -- References -- 14 Reaction-Forming of Ceramic Composites Using Metallic Aluminum -- 14.1 Introduction -- 14.2 Reaction Bonding of Aluminum Oxide (RBAO Process) -- 14.3 RBAO Modifications -- 14.3.1 Reaction-Bonded Mullite -- 14.3.2 Reaction-Bonded Aluminum Niobate -- 14.3.3 Fiber-Reinforced Oxide Matrix Composites -- 14.4 Directed Metal Oxidation -- 14.5 Sintered Alumina Aluminide Alloys -- 14.6 Reactive Metal Penetration -- 14.7 Reactive Melt Infiltration -- 14.7.a External Pressure Infiltration, I-3A -- 14.7.b In Situ Pressure Infiltration, ISI-3A -- References -- 15 Processing and Morphology Control of Porous Ceramics -- 15.1 Introduction -- 15.2 Enlarged Necking Promoted by Sintering Nano-Particles -- 15.3 Unidirectional Pore Channels Created by the Gelation-Freezing Method -- 15.4 Spherical Pores Produced by Foaming a Preceramic Polymer -- 15.5 Coating of Ceramic Foams With Ceramic Nanowires -- 15.6 Conclusion -- References.
16 Integration Challenges in Alternative and Renewable Energy Systems -- 16.1 Introduction -- 16.2 Ceramics in Energy Applications -- 16.3 Materials for Thermal Management Systems -- 16.4 Ceramic Joining and Integration -- 16.5 Ceramic Integration for Energy-Related Applications -- 16.5.1 Solid Oxide Fuel Cells -- 16.5.2 Heat Exchangers and Thermal Energy Storage Systems -- 16.5.3 Joining of Carbon/Carbon for Thermal Management -- 16.5.4 Joining of Ceramics for High-Temperature Energy Systems -- 16.6 Future Prospects -- References -- 17 Free Form Fabrication of Ceramics Components by Three-dimensional Stereolithography -- 17.1 Introduction -- 17.2 Stereolithography Additive Manufacturing -- 17.3 Dielectric Micro Patterns -- 17.4 Porous Electrode With Ordered Structure -- 17.5 Biological Scaffold With A Graded Lattice -- 17.6 Ceramic Dental Crown -- 17.7 Conclusion -- References -- 18 Joining and Integration of Silicon Carbide-Based Ceramics and Composites for High-Temperature Structural Applications -- 18.1 Introduction -- 18.2 Details of Joining Approaches -- 18.2.1 The Brazing Approach -- 18.2.2 The Diffusion Bonding Approach -- 18.2.3 The ARCJoinT Approach -- 18.2.4 The REABond Approach -- 18.2.5 The SET Joining Approach -- 18.3 Summary/Conclusions -- Acknowledgments -- References -- Part 4 Multifunctional Ceramics -- 19 Current Trends in Ceramic Technologies and Systems -- 19.1 Introduction -- 19.2 Trend 1: Industry 4.0 -- 19.3 Trend 2: Mass Customization -- 19.4 Trend 3: Fiber-Reinforced Composites -- 19.4.1 Nonoxide Ceramic Matrix Composites for Gas Turbine Applications -- 19.4.2 High-Temperature Stable Ceramic Fiber Coatings -- 19.4.3 Carbon Fiber-Reinforced Metal Matrix Composite -- 19.5 Trend 4: Self-Diagnosis -- 19.6 Trend 5: Ceramic Filters and Membranes -- 19.6.1 Ceramic Membranes for Liquid Filtration -- 19.6.2 Microfiltration Membranes.
19.6.3 Ultrafiltration Membranes.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.