ORPP logo
Image from Google Jackets

Residue Analysis in Food : Principles and Applications.

By: Material type: TextTextPublisher: Boca Raton : Taylor & Francis Group, 2000Copyright date: ©2000Edition: 1st edDescription: 1 online resource (326 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781482283525
Subject(s): Genre/Form: Additional physical formats: Print version:: Residue Analysis in FoodDDC classification:
  • 363.192
LOC classification:
  • TX571.P4 .R475 2018
Online resources:
Contents:
Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Contributors -- 1: Introduction -- 1.1 Chemical Contamination of Food -- 1.2 Residue Analysis -- 1.3 Advances in Residue Analysis Methodologies -- 1.4 The Sample is the Key -- 1.5 Analytical Methods -- 1.6 Special Issues in Residue Analysis -- 1.7 Future -- References -- 2: Primary Extraction Technologies -- 2.1 Introduction -- 2.1.1 Types of residues -- 2.1.2 Justification for primary extraction -- 2.1.3 Difficulties in the analysis of residues -- 2.2 Stages in the Analysis of Residues in Food -- 2.2.1 Sampling -- 2.2.2 Transfer to the laboratory and storage -- 2.2.3 Thawing -- 2.2.4 Internal standard -- 2.2.5 Homogenisation -- 2.2.5.1 Milk -- 2.2.5.2 Eggs -- 2.2.5.3 Tissues -- 2.2.6 Enzyme/acid hydrolysis and digestion -- 2.2.7 (Primary) Extraction -- 2.2.8 Clean-up -- 2.2.8.1 Elimination of water -- 2.2.8.2 Elimination of fat -- 2.2.8.3 Elimination of proteins -- 2.2.8.4 Elimination of co-extractives -- 2.2.9 Solvent removal -- 2.2.10 End point determination -- 2.3 Liquid-Liquid Partitioning -- 2.3.1 Theory -- 2.3.1.1 Multiple extraction -- 2.3.1.2 Influence of pH -- 2.3.1.3 Influence of temperature -- 2.3.1.4 Ion-pairing -- 2.3.1.5 Salting-out -- 2.4 Recovery Estimation in Quantitative Analysis -- 2.5 Examples -- 2.5.1 Pesticides -- 2.5.2 ß-Agonists -- 2.5.3 Steroid hormones -- 2.5.3.1 Androgens -- 2.5.3.2 O estrogens -- 2.5.3.3 Progestagens -- 2.5.4 Antibiotics -- 2.5.4.1 Poly ethers -- 2.5.4.2 Macrolides -- 2.5.4.3 Chloramphenicol -- 2.5.5 Mycotoxins -- 2.5.6 Further reading -- 2.6 References -- 3: Sorbent Technologies : Principles and Applications -- 3.1 Introduction -- 3.2 Solid Phase Extraction -- 3.2.1 Adsorption mode -- 3.2.2 Size exclusion or permeation mode -- 3.2.3 Bonded phase partition mode.
3.3 Sorbent Technologies: Columns, Cartridges and Discs -- 3.4 Solid Phase Microextraction -- 3.5 Matrix Solid Phase Dispersion -- 3.6 Characteristics of the MSPD Process -- 3.6.1 Unique sample interactions -- 3.6.2 The nature of the solid support and bonded phase -- 3.6.3 Matrix modification -- 3.6.4 Solvent elution -- 3.6.5 The matrix effect -- 3.7 Applications -- 3.8 References -- 4: Automated Extraction/Clean-Up Technologies -- 4.1 Introduction -- 4.2 Automated Solid-Phase Extraction Techniques -- 4.2.1 Principle -- 4.2.2 Applications of automated solid-phase extraction techniques -- 4.3 Column Switching Techniques -- 4.3.1 Principle -- 4.3.2 Applications of column-switching techniques -- 4.3.2.1 Sample clean-up -- 4.3.2.2 Sample enrichment -- 4.4. Supercritical Fluid Extraction (SFE) -- 4.4.1 Principle -- 4.4.2 Applications of SFE -- 4.4.2.1 Introduction -- 4.4.2.2 SFE of residues of analytes from'non-fatty'matrices -- 4.4.2.3 SFE of residues of analytes from fatty matrices -- 4.4.2.4 SFE of residues of analytes from samples of fat -- 4.5 Conclusions -- 4.6 References -- 5: Immunochemical and Receptor Technologies -- 5.1 Introduction -- 5.2 Specific Reagents -- 5.2.1 Antibodies -- 5.2.1.1 Antibody-antigen interaction -- 5.2.1.2 Poly-or monoclonal recombinant or anti-anti-idiotype antibodies -- 5.2.1.3 Antibodies towards haptens -- 5.2.2 Receptors -- 5.2.2.1 Receptor binding -- 5.2.2.2 Hormonal receptors -- 5.2.2.3 Steroid hormone receptors -- 5.3 Assay Formats and Applications -- 5.3.1 Radioimmunoassay (RIA) -- 5.3.2 Receptor -- 5.3.2.1 Radio receptor assay (RRA ) -- 5.3.2.2 Microbial receptor assay -- 5.3.2.3 Functional tests -- 5.3.3 Enzyme-linked immunosorbent assay (ELISA) -- 5.3.4 Sol particle immunoassay (SPIA) -- 5.3.5 Enhanced enzyme immunoassays -- 5.3.5.1 Avidin-biotin systems -- 5.3.5.2 Chemiluminescence enzyme immunoassays (cEIA).
5.3.5.3 Electro-chemiluminescence immunoassays -- 5.3.6 Fluorescence immunoassays -- 5.3.6.1 Fluorescence polarisation immunoassay (FPIA) -- 5.3.6.2 Time-resolved fluoroimmunoassay (TR-FIA) or dissociation enhanced lanthanide fluoroimmunoassay (DELFIA) -- 5.3.6.3 Solid phase fluorescence immunoassay (SPFIA) -- 5.3.7 Biosensors -- 5.3.7.1 Biosensor applications -- 5.4 Sample Preparation and Screening Assays -- 5.5 Immunoaffinity Chromatography -- 5.5.1 IAC columns -- 5.5.1.1 Commercially available columns -- 5.5.1.2 Column preparation -- 5.5.1.3 Column characteristics -- 5.5.2 IAC procedures -- 5.5.3 IAC applications -- 5.5.3.1 Mycotoxins -- 5.5.3.2 Growth promoters -- 5.5.3.3 Veterinary drugs and other analytes -- 5.5.3.4 Pesticides and contaminants -- 5.6 References -- 6: High Performance Thin Layer Chromatography for Residue Analysis -- 6.1 Introduction -- 6.2 The Four Steps of TLC -- 6.2.1 Application -- 6.2.2 Development -- 6.2.2.1 A The stationary phase -- 6.2.2.2 The solvents -- 6.2.2.3 Automated multiple development (AMD -- 6.2.3 Detection -- 6.2.3.1 The visualisation -- 6.2.3.2 The documentation -- 6.2.4 Quantification -- 6.3 Some Special Features of TLC -- 6.3.1 Two-dimensional TLC -- 6.3.2 "4x4"-TLC -- 6.3.3 Anti-diagonal development -- 6.3.4 Coupled layers -- 6.3.5 Reaction TLC -- 6.3.5.1 Derivatisation at the application site -- 6.3.5.2 Other reactions at the application site -- 6.3.6 Some additional advantages of TLC -- 6.4 Quality Criteria for the Use of TLC in Residue Analysis -- 6.4.1 Introduction -- 6.4.2 Discussion of the quality criteria -- 6.5 Comparison of TLC with other Methods for Residue Analysis -- 6.6 Examples of TLC Methods in Residue Analysis -- 6.6.1 TLC methods for illegal growth promoters -- 6.6.1.1 Thyreostatic drugs -- 6.6.1.2 Anabolic steroids -- 6.6.1.3 Beta-agonists -- 6.6.1.4 Corticosteroids.
6.6.2 TLC methods for antibacterials -- 6.6.2.1 Sulphonamides -- 6.6.2.2 Tetracyclines -- 6.6.2.3 Polyether antibiotics -- 6.6.2.4 Macrolide antibiotics -- 6.6.3 TLC methods for other residues -- 6.7 Is There a Future for TLC in Residue Analysis? -- 6.7.1 Automation in TLC -- 6.7.2 Enhancing specificity in TLC -- 6.7.3 TLC/MS -- 6.7.3.1 Direct TLC/MS -- 6.7.3.2 TLC with additional hyphenated MS techniques -- 6.8 Conclusion -- 6.9 References -- 7: Gas Chromatography -- 7.1 Historical -- 7.2 Introduction -- 7.2.1 Definitions -- 7.2.2 Phenomena involved -- 7.2.3 Residue analysis -- 7.3 Carrier Gas -- 7.4 Injector -- 7.4.1 Split injector -- 7.4.2 Splitless injector -- 7.4.3 Cold on-column injector -- 7.4.4 De Ros injector -- 7.4.5 Headspace injector -- 7.4.6 Large volume injector -- 7.5 Columns -- 7.5.1 Three column types -- 7.5.1.1 Packed columns -- 7.5.1.2 Capillary columns -- 7.5.1.3 530 ¡dm columns -- 7.5.2 Stationary phases -- 7.5.2.1 Glycol polyesters -- 7.5.2.2 Glycol polyethers -- 7.5.2.3 Silicones -- 7.5.2.4 A Apoiar branched hydrocarbons -- 7.5.3 Two dimensional gas chromatography -- 7.6 Oven -- 7.7 Detectors -- 7.7.1 Thermal conductivity detector (TCD) -- 7.7.2 Flame ionisation detector (FID) -- 7.7.3 Nitrogen phosphorus (thermionic) detector (NPD) -- 7.7.4 Electron capture detector (ECD) -- 7.7.5 Flame photometric detector (FPD) -- 7.7.6 Other detectors -- 7.7.7 Infrared detector -- 7.7.7.1 Infrared spectrometry -- 7.7.7.2 Coupling of GC with the IR detector -- 7.7.8 Atomic detector -- 7.7.8.1 Atomic spectrometry -- 7.7.8.2 Coupling of GC with the atomic (AAS) detector -- 7.7.9 Mass detector -- 7.7.9.1 Mass spectrometry -- 7.7.9.2 Ionisation processes -- 7.7.9.2.1 Electron impact (EI) mode -- 7.7.9.2.2 Chemical ionisation - positive mode -- 7.7.9.2.3 Chemical ionisation - negative mode -- 7.7.9.3 Mass detectors -- 7.7.9.3.1 Quadrupole.
7.7.9.3.2 Ion trap -- 7.7.9.3.3 Double focusing spectrometers -- 7.7.9.4 Acquisition methods -- 7.7.9.4.1 SCAN mode -- 7.7.9.4.2 SIM (LR andHR) mode -- 7.7.9.4.3 SRM mode -- 7.8 Derivatisation -- 7.8.1 Principle and effects of derivatisation -- 7.8.1.1 Principle -- 7.8.1.2 Separation effects -- 7.8.1.3 Detection (ECD, NPD, FPD, MS) effects -- 7.8.2 Classical derivatisation reactions -- 7.8.2.1 Alkylation -- 7.8.2.2 Acylation -- 7.8.2.3 Silylation -- 7.8.2.4 Condensation -- 7.9 Conclusion -- 7.10 References -- 8: High Performance Liquid Chromatography -- 8.1 Introduction -- 8.2 A Race to the Finish: The Chromatographic Process -- 8.2.1 The capacity factor (thermodynamic effects) -- 8.2.2 Efficiency and resolution -- 8.2.3 Band broadening (kinetic effects) -- 8.3 Simplifying the Mixture: Modes of Chromatography -- 8.3.1 Adsorption chromatography -- 8.3.2 Partition chromatography -- 8.3.3 Bonded phase chromatography -- 8.3.3.1 Support material -- 8.3.3.2 Normal phase chromatography -- 8.3.3.3 Reversed phase chromatography -- 8.3.4 Ionic species -- 8.3.4.1 Ion suppression -- 8.3.4.2 Ion pair chromatography -- 8.3.4.3 Ion-exchange chromatography -- 8.3.5 Affinity chromatography -- 8.4 The Building Blocks: HPLC Instrumentation -- 8.4.1 Pumping systems -- 8.4.1.1 Reciprocating piston pump -- 8.4.1.2 Syringe pumps -- 8.4.1.3 Degassers -- 8.4.2 Sample introduction -- 8.4.2.1 Automated injectors -- 8.4.3 Tubing, in-line filters and guard columns -- 8.4.3.1 Tubing -- 8.4.3.2 In-line filters and guard columns -- 8.4.3.3 Scavenger columns -- 8.4.4 Chromatographic columns -- 8.4.4.1 Conventional columns -- 8.4.4.2 Narrow bore columns -- 8.4.4.3 Microbore columns -- 8.4.4.4 Column switching -- 8.4.4.5 Column ovens -- 8.4.5 Detectors -- 8.4.5.1 Ultraviolet and visible detectors -- 8.4.5.2 Photodiode array detectors -- 8.4.5.3 Fluorescence detectors.
8.4.5.4 Electrochemical detectors.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Contributors -- 1: Introduction -- 1.1 Chemical Contamination of Food -- 1.2 Residue Analysis -- 1.3 Advances in Residue Analysis Methodologies -- 1.4 The Sample is the Key -- 1.5 Analytical Methods -- 1.6 Special Issues in Residue Analysis -- 1.7 Future -- References -- 2: Primary Extraction Technologies -- 2.1 Introduction -- 2.1.1 Types of residues -- 2.1.2 Justification for primary extraction -- 2.1.3 Difficulties in the analysis of residues -- 2.2 Stages in the Analysis of Residues in Food -- 2.2.1 Sampling -- 2.2.2 Transfer to the laboratory and storage -- 2.2.3 Thawing -- 2.2.4 Internal standard -- 2.2.5 Homogenisation -- 2.2.5.1 Milk -- 2.2.5.2 Eggs -- 2.2.5.3 Tissues -- 2.2.6 Enzyme/acid hydrolysis and digestion -- 2.2.7 (Primary) Extraction -- 2.2.8 Clean-up -- 2.2.8.1 Elimination of water -- 2.2.8.2 Elimination of fat -- 2.2.8.3 Elimination of proteins -- 2.2.8.4 Elimination of co-extractives -- 2.2.9 Solvent removal -- 2.2.10 End point determination -- 2.3 Liquid-Liquid Partitioning -- 2.3.1 Theory -- 2.3.1.1 Multiple extraction -- 2.3.1.2 Influence of pH -- 2.3.1.3 Influence of temperature -- 2.3.1.4 Ion-pairing -- 2.3.1.5 Salting-out -- 2.4 Recovery Estimation in Quantitative Analysis -- 2.5 Examples -- 2.5.1 Pesticides -- 2.5.2 ß-Agonists -- 2.5.3 Steroid hormones -- 2.5.3.1 Androgens -- 2.5.3.2 O estrogens -- 2.5.3.3 Progestagens -- 2.5.4 Antibiotics -- 2.5.4.1 Poly ethers -- 2.5.4.2 Macrolides -- 2.5.4.3 Chloramphenicol -- 2.5.5 Mycotoxins -- 2.5.6 Further reading -- 2.6 References -- 3: Sorbent Technologies : Principles and Applications -- 3.1 Introduction -- 3.2 Solid Phase Extraction -- 3.2.1 Adsorption mode -- 3.2.2 Size exclusion or permeation mode -- 3.2.3 Bonded phase partition mode.

3.3 Sorbent Technologies: Columns, Cartridges and Discs -- 3.4 Solid Phase Microextraction -- 3.5 Matrix Solid Phase Dispersion -- 3.6 Characteristics of the MSPD Process -- 3.6.1 Unique sample interactions -- 3.6.2 The nature of the solid support and bonded phase -- 3.6.3 Matrix modification -- 3.6.4 Solvent elution -- 3.6.5 The matrix effect -- 3.7 Applications -- 3.8 References -- 4: Automated Extraction/Clean-Up Technologies -- 4.1 Introduction -- 4.2 Automated Solid-Phase Extraction Techniques -- 4.2.1 Principle -- 4.2.2 Applications of automated solid-phase extraction techniques -- 4.3 Column Switching Techniques -- 4.3.1 Principle -- 4.3.2 Applications of column-switching techniques -- 4.3.2.1 Sample clean-up -- 4.3.2.2 Sample enrichment -- 4.4. Supercritical Fluid Extraction (SFE) -- 4.4.1 Principle -- 4.4.2 Applications of SFE -- 4.4.2.1 Introduction -- 4.4.2.2 SFE of residues of analytes from'non-fatty'matrices -- 4.4.2.3 SFE of residues of analytes from fatty matrices -- 4.4.2.4 SFE of residues of analytes from samples of fat -- 4.5 Conclusions -- 4.6 References -- 5: Immunochemical and Receptor Technologies -- 5.1 Introduction -- 5.2 Specific Reagents -- 5.2.1 Antibodies -- 5.2.1.1 Antibody-antigen interaction -- 5.2.1.2 Poly-or monoclonal recombinant or anti-anti-idiotype antibodies -- 5.2.1.3 Antibodies towards haptens -- 5.2.2 Receptors -- 5.2.2.1 Receptor binding -- 5.2.2.2 Hormonal receptors -- 5.2.2.3 Steroid hormone receptors -- 5.3 Assay Formats and Applications -- 5.3.1 Radioimmunoassay (RIA) -- 5.3.2 Receptor -- 5.3.2.1 Radio receptor assay (RRA ) -- 5.3.2.2 Microbial receptor assay -- 5.3.2.3 Functional tests -- 5.3.3 Enzyme-linked immunosorbent assay (ELISA) -- 5.3.4 Sol particle immunoassay (SPIA) -- 5.3.5 Enhanced enzyme immunoassays -- 5.3.5.1 Avidin-biotin systems -- 5.3.5.2 Chemiluminescence enzyme immunoassays (cEIA).

5.3.5.3 Electro-chemiluminescence immunoassays -- 5.3.6 Fluorescence immunoassays -- 5.3.6.1 Fluorescence polarisation immunoassay (FPIA) -- 5.3.6.2 Time-resolved fluoroimmunoassay (TR-FIA) or dissociation enhanced lanthanide fluoroimmunoassay (DELFIA) -- 5.3.6.3 Solid phase fluorescence immunoassay (SPFIA) -- 5.3.7 Biosensors -- 5.3.7.1 Biosensor applications -- 5.4 Sample Preparation and Screening Assays -- 5.5 Immunoaffinity Chromatography -- 5.5.1 IAC columns -- 5.5.1.1 Commercially available columns -- 5.5.1.2 Column preparation -- 5.5.1.3 Column characteristics -- 5.5.2 IAC procedures -- 5.5.3 IAC applications -- 5.5.3.1 Mycotoxins -- 5.5.3.2 Growth promoters -- 5.5.3.3 Veterinary drugs and other analytes -- 5.5.3.4 Pesticides and contaminants -- 5.6 References -- 6: High Performance Thin Layer Chromatography for Residue Analysis -- 6.1 Introduction -- 6.2 The Four Steps of TLC -- 6.2.1 Application -- 6.2.2 Development -- 6.2.2.1 A The stationary phase -- 6.2.2.2 The solvents -- 6.2.2.3 Automated multiple development (AMD -- 6.2.3 Detection -- 6.2.3.1 The visualisation -- 6.2.3.2 The documentation -- 6.2.4 Quantification -- 6.3 Some Special Features of TLC -- 6.3.1 Two-dimensional TLC -- 6.3.2 "4x4"-TLC -- 6.3.3 Anti-diagonal development -- 6.3.4 Coupled layers -- 6.3.5 Reaction TLC -- 6.3.5.1 Derivatisation at the application site -- 6.3.5.2 Other reactions at the application site -- 6.3.6 Some additional advantages of TLC -- 6.4 Quality Criteria for the Use of TLC in Residue Analysis -- 6.4.1 Introduction -- 6.4.2 Discussion of the quality criteria -- 6.5 Comparison of TLC with other Methods for Residue Analysis -- 6.6 Examples of TLC Methods in Residue Analysis -- 6.6.1 TLC methods for illegal growth promoters -- 6.6.1.1 Thyreostatic drugs -- 6.6.1.2 Anabolic steroids -- 6.6.1.3 Beta-agonists -- 6.6.1.4 Corticosteroids.

6.6.2 TLC methods for antibacterials -- 6.6.2.1 Sulphonamides -- 6.6.2.2 Tetracyclines -- 6.6.2.3 Polyether antibiotics -- 6.6.2.4 Macrolide antibiotics -- 6.6.3 TLC methods for other residues -- 6.7 Is There a Future for TLC in Residue Analysis? -- 6.7.1 Automation in TLC -- 6.7.2 Enhancing specificity in TLC -- 6.7.3 TLC/MS -- 6.7.3.1 Direct TLC/MS -- 6.7.3.2 TLC with additional hyphenated MS techniques -- 6.8 Conclusion -- 6.9 References -- 7: Gas Chromatography -- 7.1 Historical -- 7.2 Introduction -- 7.2.1 Definitions -- 7.2.2 Phenomena involved -- 7.2.3 Residue analysis -- 7.3 Carrier Gas -- 7.4 Injector -- 7.4.1 Split injector -- 7.4.2 Splitless injector -- 7.4.3 Cold on-column injector -- 7.4.4 De Ros injector -- 7.4.5 Headspace injector -- 7.4.6 Large volume injector -- 7.5 Columns -- 7.5.1 Three column types -- 7.5.1.1 Packed columns -- 7.5.1.2 Capillary columns -- 7.5.1.3 530 ¡dm columns -- 7.5.2 Stationary phases -- 7.5.2.1 Glycol polyesters -- 7.5.2.2 Glycol polyethers -- 7.5.2.3 Silicones -- 7.5.2.4 A Apoiar branched hydrocarbons -- 7.5.3 Two dimensional gas chromatography -- 7.6 Oven -- 7.7 Detectors -- 7.7.1 Thermal conductivity detector (TCD) -- 7.7.2 Flame ionisation detector (FID) -- 7.7.3 Nitrogen phosphorus (thermionic) detector (NPD) -- 7.7.4 Electron capture detector (ECD) -- 7.7.5 Flame photometric detector (FPD) -- 7.7.6 Other detectors -- 7.7.7 Infrared detector -- 7.7.7.1 Infrared spectrometry -- 7.7.7.2 Coupling of GC with the IR detector -- 7.7.8 Atomic detector -- 7.7.8.1 Atomic spectrometry -- 7.7.8.2 Coupling of GC with the atomic (AAS) detector -- 7.7.9 Mass detector -- 7.7.9.1 Mass spectrometry -- 7.7.9.2 Ionisation processes -- 7.7.9.2.1 Electron impact (EI) mode -- 7.7.9.2.2 Chemical ionisation - positive mode -- 7.7.9.2.3 Chemical ionisation - negative mode -- 7.7.9.3 Mass detectors -- 7.7.9.3.1 Quadrupole.

7.7.9.3.2 Ion trap -- 7.7.9.3.3 Double focusing spectrometers -- 7.7.9.4 Acquisition methods -- 7.7.9.4.1 SCAN mode -- 7.7.9.4.2 SIM (LR andHR) mode -- 7.7.9.4.3 SRM mode -- 7.8 Derivatisation -- 7.8.1 Principle and effects of derivatisation -- 7.8.1.1 Principle -- 7.8.1.2 Separation effects -- 7.8.1.3 Detection (ECD, NPD, FPD, MS) effects -- 7.8.2 Classical derivatisation reactions -- 7.8.2.1 Alkylation -- 7.8.2.2 Acylation -- 7.8.2.3 Silylation -- 7.8.2.4 Condensation -- 7.9 Conclusion -- 7.10 References -- 8: High Performance Liquid Chromatography -- 8.1 Introduction -- 8.2 A Race to the Finish: The Chromatographic Process -- 8.2.1 The capacity factor (thermodynamic effects) -- 8.2.2 Efficiency and resolution -- 8.2.3 Band broadening (kinetic effects) -- 8.3 Simplifying the Mixture: Modes of Chromatography -- 8.3.1 Adsorption chromatography -- 8.3.2 Partition chromatography -- 8.3.3 Bonded phase chromatography -- 8.3.3.1 Support material -- 8.3.3.2 Normal phase chromatography -- 8.3.3.3 Reversed phase chromatography -- 8.3.4 Ionic species -- 8.3.4.1 Ion suppression -- 8.3.4.2 Ion pair chromatography -- 8.3.4.3 Ion-exchange chromatography -- 8.3.5 Affinity chromatography -- 8.4 The Building Blocks: HPLC Instrumentation -- 8.4.1 Pumping systems -- 8.4.1.1 Reciprocating piston pump -- 8.4.1.2 Syringe pumps -- 8.4.1.3 Degassers -- 8.4.2 Sample introduction -- 8.4.2.1 Automated injectors -- 8.4.3 Tubing, in-line filters and guard columns -- 8.4.3.1 Tubing -- 8.4.3.2 In-line filters and guard columns -- 8.4.3.3 Scavenger columns -- 8.4.4 Chromatographic columns -- 8.4.4.1 Conventional columns -- 8.4.4.2 Narrow bore columns -- 8.4.4.3 Microbore columns -- 8.4.4.4 Column switching -- 8.4.4.5 Column ovens -- 8.4.5 Detectors -- 8.4.5.1 Ultraviolet and visible detectors -- 8.4.5.2 Photodiode array detectors -- 8.4.5.3 Fluorescence detectors.

8.4.5.4 Electrochemical detectors.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.