ORPP logo
Image from Google Jackets

Global Regularity and Uniqueness of Solutions in a Surface Growth Model Using Rigorous a-Posteriori Methods.

By: Material type: TextTextSeries: Augsburger Schriften Zur Mathematik, Physik und Informatik SeriesPublisher: Berlin : Logos Verlag Berlin, 2017Copyright date: ©2017Edition: 1st edDescription: 1 online resource (98 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783832592097
Subject(s): Genre/Form: Additional physical formats: Print version:: Global Regularity and Uniqueness of Solutions in a Surface Growth Model Using Rigorous a-Posteriori MethodsDDC classification:
  • 541.37
LOC classification:
  • QD553 .N653 2017
Online resources:
Contents:
Intro -- 1 Introduction -- 1.1 Outline -- 1.2 General Setting and Notation -- 1.3 Acknowledgments -- 2 A-priori Analysis -- 2.1 Energy Estimate -- 2.2 Time and Smallness Conditions -- 2.3 ODE Estimates -- 3 Verification Methods -- 3.1 First Method -- 3.2 Second Method -- 3.3 Third Method -- 3.4 Numerical Comparison -- 3.5 Conclusion -- 4 Eigenvalue Estimate -- 4.1 Setting and Theorem -- 4.2 Proof of the Theorem -- 4.3 Comparison with the Previous Estimate -- 4.4 Application to the Surface Growth Equation -- 5 Numerical Preparations -- 5.1 Norm of the Residual -- 5.2 Rigorous Computable Bound for Method 3 -- 5.3 Rigorous Computable Bound including the Eigenvalue Estimate -- 6 Simulations -- A Basic Tools -- B Numerical Implementation.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- 1 Introduction -- 1.1 Outline -- 1.2 General Setting and Notation -- 1.3 Acknowledgments -- 2 A-priori Analysis -- 2.1 Energy Estimate -- 2.2 Time and Smallness Conditions -- 2.3 ODE Estimates -- 3 Verification Methods -- 3.1 First Method -- 3.2 Second Method -- 3.3 Third Method -- 3.4 Numerical Comparison -- 3.5 Conclusion -- 4 Eigenvalue Estimate -- 4.1 Setting and Theorem -- 4.2 Proof of the Theorem -- 4.3 Comparison with the Previous Estimate -- 4.4 Application to the Surface Growth Equation -- 5 Numerical Preparations -- 5.1 Norm of the Residual -- 5.2 Rigorous Computable Bound for Method 3 -- 5.3 Rigorous Computable Bound including the Eigenvalue Estimate -- 6 Simulations -- A Basic Tools -- B Numerical Implementation.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.