ORPP logo
Image from Google Jackets

Wireless Information and Power Transfer : Theory and Practice.

By: Contributor(s): Material type: TextTextSeries: IEEE Press SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2019Copyright date: ©2019Edition: 1st edDescription: 1 online resource (321 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119476849
Subject(s): Genre/Form: Additional physical formats: Print version:: Wireless Information and Power TransferDDC classification:
  • 621.381/044
LOC classification:
  • TK3088 .W574 2019
Online resources:
Contents:
Intro -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 The Era of Wireless Information and Power Transfer -- 1.1 Introduction -- 1.2 Background -- 1.2.1 RF-Based Wireless Power Transfer -- 1.2.2 Receiver Structure for WIPT -- 1.3 Energy Harvesting Model and Waveform Design -- 1.4 Efficiency and Interference Management in WIPT Systems -- 1.5 Security in SWIPT Systems -- 1.6 Cooperative WIPT Systems -- 1.7 WIPT for 5G Applications -- 1.8 Conclusion -- Acknowledgement -- Bibliography -- Chapter 2 Fundamentals of Signal Design for WPT and SWIPT -- 2.1 Introduction -- 2.2 WPT Architecture -- 2.3 WPT Signal and System Design -- 2.4 SWIPT Signal and System Design -- 2.5 Conclusions and Observations -- Bibliography -- Chapter 3 Unified Design of Wireless Information and Power Transmission -- 3.1 Introduction -- 3.2 Nonlinear EH Models -- 3.3 Waveform and Transceiver Design -- 3.3.1 Multi-tone (PAPR) based SWIPT -- 3.3.2 Dual Mode SWIPT -- 3.4 Energy Harvesting Circuit Design -- 3.5 Discussion and Conclusion -- Bibliography -- Chapter 4 Industrial SWIPT: Backscatter Radio and RFIDs -- 4.1 Introduction -- 4.2 Wireless Signal Model -- 4.3 RFID Tag Operation -- 4.3.1 RF Harvesting and Powering for RFID Tag -- 4.3.2 RFID Tag Backscatter (Uplink) Radio -- 4.4 Reader BER for Operational RFID -- 4.5 RFID Reader SWIPT Reception -- 4.5.1 Harvesting Sensitivity Outage -- 4.5.2 Power Consumption Outage -- 4.5.3 Information Outage -- 4.5.4 Successful SWIPT Reception -- 4.6 Numerical Results -- 4.7 Conclusion -- Bibliography -- Chapter 5 Multi-antenna Energy Beamforming for SWIPT -- 5.1 Introduction -- 5.2 System Model -- 5.3 Rate-Energy Region Characterization -- 5.3.1 Problem Formulation -- 5.3.2 Optimal Solution -- 5.4 Extensions -- 5.5 Conclusion -- Bibliography -- Chapter 6 On the Application of SWIPT in NOMA Networks.
6.1 Introduction -- 6.1.1 Motivation -- 6.2 Network Model -- 6.2.1 Phase 1: Direct Transmission -- 6.2.2 Phase 2: Cooperative Transmission -- 6.3 Non-Orthogonal Multiple Access with User Selection -- 6.3.1 RNRF Selection Scheme -- 6.3.2 NNNF Selection Scheme -- 6.3.3 NNFF Selection Scheme -- 6.4 Numerical Results -- 6.4.1 Outage Probability of the Near Users -- 6.4.2 Outage Probability of the Far Users -- 6.4.3 Throughput in Delay-Sensitive Transmission Mode -- 6.5 Conclusions -- Bibliography -- Chapter 7 Fairness-Aware Wireless Powered Communications with Processing Cost -- 7.1 Introduction -- 7.2 System Model -- 7.2.1 Energy Storage Strategies -- 7.2.2 Circuit Power Consumption -- 7.3 Proportionally Fair Resource Allocation -- 7.3.1 Short-term Energy Storage Strategy -- 7.3.2 Long-term Energy Storage Strategy -- 7.3.3 Practical Online Implementation -- 7.3.4 Numerical Results -- 7.4 Conclusion -- 7.5 Appendix -- 7.5.1 Proof of Theorem 7.2 -- Bibliography -- Chapter 8 Wireless Power Transfer in Millimeter Wave -- 8.1 Introduction -- 8.2 System Model -- 8.3 Analytical Results -- 8.4 Key Insights -- 8.5 Conclusions -- 8.6 Appendix -- Bibliography -- Chapter 9 Wireless Information and Power Transfer in Relaying Systems -- 9.1 Introduction -- 9.2 Wireless-Powered Cooperative Networks with a Single Source-Destination Pair -- 9.2.1 System Model and Outline -- 9.2.2 Wireless Energy Harvesting Relaying Protocols -- 9.2.3 Multiple Antennas at the Relay -- 9.2.4 Multiple Relays and Relay Selection Strategies -- 9.2.5 Power Allocation Strategies for Multiple Carriers -- 9.3 Wireless-Powered Cooperative Networks with Multiple Sources -- 9.3.1 System Model -- 9.3.2 Power Allocation Strategies -- 9.3.3 Multiple Relays and Relay Selection Strategies -- 9.3.4 Two-Way Relaying Networks -- 9.4 Future Research Challenges.
9.4.1 Nonlinear Energy Harvesting Model and Hardware Impairments -- 9.4.2 NOMA-based Relaying -- 9.4.3 Large-Scale Networks -- 9.4.4 Cognitive Relaying -- Bibliography -- Chapter 10 Harnessing Interference in SWIPT Systems -- 10.1 Introduction -- 10.2 System Model -- 10.3 Conventional Precoding Solution -- 10.4 Joint Precoding and Power Splitting with Constructive Interference -- 10.4.1 Problem Formulation -- 10.4.2 Upper Bounding SOCP Algorithm -- 10.4.3 Successive Linear Approximation Algorithm -- 10.4.4 Lower Bounding SOCP Formulation -- 10.5 Simulation Results -- 10.6 Conclusions -- Bibliography -- Chapter 11 Physical Layer Security in SWIPT Systems with Nonlinear Energy Harvesting Circuits -- 11.1 Introduction -- 11.2 Channel Model -- 11.2.1 Energy Harvesting Model -- 11.2.2 Channel State Information Model -- 11.2.3 Secrecy Rate -- 11.3 Optimization Problem and Solution -- 11.4 Results -- 11.5 Conclusions -- Appendix-Proof of Theorem 11.1 -- Bibliography -- Chapter 12 Wireless-Powered Cooperative Networks with Energy Accumulation -- 12.1 Introduction -- 12.2 System Model -- 12.3 Energy Accumulation of Relay Battery -- 12.3.1 Transition Matrix of the MC -- 12.3.2 Stationary Distribution of the Relay Battery -- 12.4 Throughput Analysis -- 12.5 Numerical Results -- 12.6 Conclusion -- 12.7 Appendix -- Bibliography -- Chapter 13 Spectral and Energy-Efficient Wireless-Powered IoT Networks -- 13.1 Introduction -- 13.2 System Model and Problem Formulation -- 13.2.1 System Model -- 13.2.2 T-WPCN and Problem Formulation -- 13.2.3 N-WPCN and Problem Formulation -- 13.3 T-WPCN or N-WPCN? -- 13.3.1 Optimal Solution for T-WPCN -- 13.3.2 Optimal Solution for N-WPCN -- 13.3.3 TDMA versus NOMA -- 13.4 Numerical Results -- 13.4.1 SE versus PB Transmit Power -- 13.4.2 SE versus Device Circuit Power -- 13.5 Conclusions -- 13.6 Future Work -- Bibliography.
Chapter 14 Wireless-Powered Mobile Edge Computing Systems -- 14.1 Introduction -- 14.2 System Model -- 14.3 Joint MEC-WPT Design -- 14.3.1 Problem Formulation -- 14.3.2 Optimal Solution -- 14.4 Numerical Results -- 14.5 Conclusion -- Bibliography -- Chapter 15 Wireless Power Transfer: A Macroscopic Approach -- 15.1 Wireless-Powered Cooperative Networks with Energy Storage -- 15.1.1 System Model -- 15.1.2 Relay Selection Schemes -- 15.1.3 Numerical Results -- 15.2 Wireless-Powered Ad Hoc Networks with SIC and SWIPT -- 15.2.1 System Model -- 15.2.2 SWIPT with SIC -- 15.2.3 Numerical Results -- 15.3 A Wireless-Powered Opportunistic Feedback Protocol -- 15.3.1 System Model -- 15.3.2 Wireless-Powered OBF Protocol -- 15.3.3 Beam Outage Probability -- 15.3.4 Numerical Results -- 15.4 Conclusion -- Bibliography -- Index -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 The Era of Wireless Information and Power Transfer -- 1.1 Introduction -- 1.2 Background -- 1.2.1 RF-Based Wireless Power Transfer -- 1.2.2 Receiver Structure for WIPT -- 1.3 Energy Harvesting Model and Waveform Design -- 1.4 Efficiency and Interference Management in WIPT Systems -- 1.5 Security in SWIPT Systems -- 1.6 Cooperative WIPT Systems -- 1.7 WIPT for 5G Applications -- 1.8 Conclusion -- Acknowledgement -- Bibliography -- Chapter 2 Fundamentals of Signal Design for WPT and SWIPT -- 2.1 Introduction -- 2.2 WPT Architecture -- 2.3 WPT Signal and System Design -- 2.4 SWIPT Signal and System Design -- 2.5 Conclusions and Observations -- Bibliography -- Chapter 3 Unified Design of Wireless Information and Power Transmission -- 3.1 Introduction -- 3.2 Nonlinear EH Models -- 3.3 Waveform and Transceiver Design -- 3.3.1 Multi-tone (PAPR) based SWIPT -- 3.3.2 Dual Mode SWIPT -- 3.4 Energy Harvesting Circuit Design -- 3.5 Discussion and Conclusion -- Bibliography -- Chapter 4 Industrial SWIPT: Backscatter Radio and RFIDs -- 4.1 Introduction -- 4.2 Wireless Signal Model -- 4.3 RFID Tag Operation -- 4.3.1 RF Harvesting and Powering for RFID Tag -- 4.3.2 RFID Tag Backscatter (Uplink) Radio -- 4.4 Reader BER for Operational RFID -- 4.5 RFID Reader SWIPT Reception -- 4.5.1 Harvesting Sensitivity Outage -- 4.5.2 Power Consumption Outage -- 4.5.3 Information Outage -- 4.5.4 Successful SWIPT Reception -- 4.6 Numerical Results -- 4.7 Conclusion -- Bibliography -- Chapter 5 Multi-antenna Energy Beamforming for SWIPT -- 5.1 Introduction -- 5.2 System Model -- 5.3 Rate-Energy Region Characterization -- 5.3.1 Problem Formulation -- 5.3.2 Optimal Solution -- 5.4 Extensions -- 5.5 Conclusion -- Bibliography -- Chapter 6 On the Application of SWIPT in NOMA Networks.

6.1 Introduction -- 6.1.1 Motivation -- 6.2 Network Model -- 6.2.1 Phase 1: Direct Transmission -- 6.2.2 Phase 2: Cooperative Transmission -- 6.3 Non-Orthogonal Multiple Access with User Selection -- 6.3.1 RNRF Selection Scheme -- 6.3.2 NNNF Selection Scheme -- 6.3.3 NNFF Selection Scheme -- 6.4 Numerical Results -- 6.4.1 Outage Probability of the Near Users -- 6.4.2 Outage Probability of the Far Users -- 6.4.3 Throughput in Delay-Sensitive Transmission Mode -- 6.5 Conclusions -- Bibliography -- Chapter 7 Fairness-Aware Wireless Powered Communications with Processing Cost -- 7.1 Introduction -- 7.2 System Model -- 7.2.1 Energy Storage Strategies -- 7.2.2 Circuit Power Consumption -- 7.3 Proportionally Fair Resource Allocation -- 7.3.1 Short-term Energy Storage Strategy -- 7.3.2 Long-term Energy Storage Strategy -- 7.3.3 Practical Online Implementation -- 7.3.4 Numerical Results -- 7.4 Conclusion -- 7.5 Appendix -- 7.5.1 Proof of Theorem 7.2 -- Bibliography -- Chapter 8 Wireless Power Transfer in Millimeter Wave -- 8.1 Introduction -- 8.2 System Model -- 8.3 Analytical Results -- 8.4 Key Insights -- 8.5 Conclusions -- 8.6 Appendix -- Bibliography -- Chapter 9 Wireless Information and Power Transfer in Relaying Systems -- 9.1 Introduction -- 9.2 Wireless-Powered Cooperative Networks with a Single Source-Destination Pair -- 9.2.1 System Model and Outline -- 9.2.2 Wireless Energy Harvesting Relaying Protocols -- 9.2.3 Multiple Antennas at the Relay -- 9.2.4 Multiple Relays and Relay Selection Strategies -- 9.2.5 Power Allocation Strategies for Multiple Carriers -- 9.3 Wireless-Powered Cooperative Networks with Multiple Sources -- 9.3.1 System Model -- 9.3.2 Power Allocation Strategies -- 9.3.3 Multiple Relays and Relay Selection Strategies -- 9.3.4 Two-Way Relaying Networks -- 9.4 Future Research Challenges.

9.4.1 Nonlinear Energy Harvesting Model and Hardware Impairments -- 9.4.2 NOMA-based Relaying -- 9.4.3 Large-Scale Networks -- 9.4.4 Cognitive Relaying -- Bibliography -- Chapter 10 Harnessing Interference in SWIPT Systems -- 10.1 Introduction -- 10.2 System Model -- 10.3 Conventional Precoding Solution -- 10.4 Joint Precoding and Power Splitting with Constructive Interference -- 10.4.1 Problem Formulation -- 10.4.2 Upper Bounding SOCP Algorithm -- 10.4.3 Successive Linear Approximation Algorithm -- 10.4.4 Lower Bounding SOCP Formulation -- 10.5 Simulation Results -- 10.6 Conclusions -- Bibliography -- Chapter 11 Physical Layer Security in SWIPT Systems with Nonlinear Energy Harvesting Circuits -- 11.1 Introduction -- 11.2 Channel Model -- 11.2.1 Energy Harvesting Model -- 11.2.2 Channel State Information Model -- 11.2.3 Secrecy Rate -- 11.3 Optimization Problem and Solution -- 11.4 Results -- 11.5 Conclusions -- Appendix-Proof of Theorem 11.1 -- Bibliography -- Chapter 12 Wireless-Powered Cooperative Networks with Energy Accumulation -- 12.1 Introduction -- 12.2 System Model -- 12.3 Energy Accumulation of Relay Battery -- 12.3.1 Transition Matrix of the MC -- 12.3.2 Stationary Distribution of the Relay Battery -- 12.4 Throughput Analysis -- 12.5 Numerical Results -- 12.6 Conclusion -- 12.7 Appendix -- Bibliography -- Chapter 13 Spectral and Energy-Efficient Wireless-Powered IoT Networks -- 13.1 Introduction -- 13.2 System Model and Problem Formulation -- 13.2.1 System Model -- 13.2.2 T-WPCN and Problem Formulation -- 13.2.3 N-WPCN and Problem Formulation -- 13.3 T-WPCN or N-WPCN? -- 13.3.1 Optimal Solution for T-WPCN -- 13.3.2 Optimal Solution for N-WPCN -- 13.3.3 TDMA versus NOMA -- 13.4 Numerical Results -- 13.4.1 SE versus PB Transmit Power -- 13.4.2 SE versus Device Circuit Power -- 13.5 Conclusions -- 13.6 Future Work -- Bibliography.

Chapter 14 Wireless-Powered Mobile Edge Computing Systems -- 14.1 Introduction -- 14.2 System Model -- 14.3 Joint MEC-WPT Design -- 14.3.1 Problem Formulation -- 14.3.2 Optimal Solution -- 14.4 Numerical Results -- 14.5 Conclusion -- Bibliography -- Chapter 15 Wireless Power Transfer: A Macroscopic Approach -- 15.1 Wireless-Powered Cooperative Networks with Energy Storage -- 15.1.1 System Model -- 15.1.2 Relay Selection Schemes -- 15.1.3 Numerical Results -- 15.2 Wireless-Powered Ad Hoc Networks with SIC and SWIPT -- 15.2.1 System Model -- 15.2.2 SWIPT with SIC -- 15.2.3 Numerical Results -- 15.3 A Wireless-Powered Opportunistic Feedback Protocol -- 15.3.1 System Model -- 15.3.2 Wireless-Powered OBF Protocol -- 15.3.3 Beam Outage Probability -- 15.3.4 Numerical Results -- 15.4 Conclusion -- Bibliography -- Index -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.