ORPP logo
Image from Google Jackets

Applied Impact Mechanics.

By: Contributor(s): Material type: TextTextSeries: ANE/Athena BksPublisher: New York : John Wiley & Sons, Incorporated, 2017Copyright date: ©2016Edition: 1st edDescription: 1 online resource (381 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119241850
Subject(s): Genre/Form: Additional physical formats: Print version:: Applied Impact MechanicsDDC classification:
  • 621
LOC classification:
  • TJ163.12.R36 2016
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Preface -- Contents -- List of Figures -- List of Tables -- List of Symbols -- 1: Introduction -- 1.1 GENERAL INTRODUCTION TO ENGINEERING MECHANICS -- 1.2 GENERAL INTRODUCTION TO FRACTURE MECHANICS -- 1.3 IMPACT MECHANICS - Appreciating Impact Problems In Engineering -- 1.4 HISTORICAL BACKGROUND -- 1.5 PERCUSSION, CONCUSSION, COLLISION AND EXPLOSION -- 1.6 SUMMARY -- BIBLIOGRAPHY -- 2: Rigid Body Impact Mechanics -- 2.1 INTRODUCTION -- 2.2 IMPULSE - MOMENTUM EQUATIONS -- 2.3 COEFFICIENT OF RESTITUTION - CLASSICAL DEFINITIONS -- 2.3.1 Kinematic Coefficient of Restitution -- 2.3.2 Measurement of Coefficient of Restitution -- 2.3.3 Relative Assessment of Various Impacts in Sports -- 2.4 COEFFICIENT OF RESTITUTION - ALTERNATE DEFINITION -- 2.4.1 Kinetic Coefficient of Restitution -- 2.4.1.1 Case Study: Rebound of Colliding Vehicles -- 2.4.2 Energy Coefficient of Restitution -- 2.4.2.1 Application in Vehicle Collisions -- 2.5 OBLIQUE IMPACT - ROLE OF FRICTION -- 2.6 LIMITATIONS OF RIGID BODY IMPACT MECHANICS -- 2.7 SUMMARY -- EXERCISE PROBLEMS -- BIBLIOGRAPHY -- 3: One-Dimensional Impact Mechanics of Deformable Bodies -- 3.1 INTRODUCTION -- 3.2 SINGLE DEGREE OF FREEDOM IDEALIZATION OF IMPACT PROCESS -- 3.2.1 Governing Equations of Single Degree of Freedom (SDOF) System -- 3.2.2 Forced Vibrations due to Exponentially Decaying Loads -- 3.3 1-D WAVE PROPAGATION IN SOLIDS INDUCED BY IMPACT -- 3.3.1 Longitudinal Waves in Thin Rods -- 3.3.1.1 The Governing Equation for Waves in Long Rods -- 3.3.1.2 Free Vibrations in a Finite Rod -- 3.3.2 Flexural Waves in Thin Rods -- 3.3.2.1 The Governing Equation for Flexural Waves in Rods -- 3.3.2.2 Free Vibrations of Finite Beams -- 3.3.3 The D'Alembert's Solution for Wave Equation -- 3.4 SUMMARY -- EXERCISE PROBLEMS -- BIBLIOGRAPHY.
4: Multi-Dimensional Impact Mechanics of Deformable Bodies -- 4.1 INTRODUCTION -- 4.2 ANALYSIS OF STRESS -- 4.2.1 Stress Components on an Arbitrary Plane -- 4.2.2 Principal Stresses and Stress Invariants -- 4.2.3 Mohr's Circles -- 4.2.4 Octahedral Stresses -- 4.2.5 Decomposition into Hydrostatic and Pure Shear States -- 4.2.6 Equations of Motion of a Body in Cartesian Coordinates -- 4.2.7 Equations of Motion of a Body in Cylindrical Coordinates -- 4.2.8 Equations of Motion of a Body in Spherical Coordinates -- 4.3 ANALYSIS OF STRAIN -- 4.3.1 Deformation in the Neighborhood of a Point -- 4.3.2 Compatibility Equations -- 4.3.3 Strain Deviator -- 4.4 LINEARISED STRESS-STRAIN RELATIONS -- 4.4.1 Stress-Strain Relations for Isotropic Materials -- 4.5 WAVES IN INFINITE MEDIUM -- 4.5.1 Longitudinal Waves (Primary/Dilatational/Irrotational Waves) -- 4.5.1.1 Longitudinal Waves -- 4.5.1.2 The Governing Equations for Longitudinal Waves (Graff, 1991) -- 4.5.2 Transverse Waves (Secondary/Shear/Distortional/Rotational Wave) -- 4.5.2.1 Transverse Waves -- 4.5.2.2 The Governing Equations for Transverse Waves -- 4.6 WAVES IN SEMI-INFINITE MEDIA -- 4.6.1 Surface Waves -- 4.6.2 Symmetric Rayleigh-Lamb Spectrum in Elastic Layer (Graff, 1991) -- 4.7 SUMMARY -- EXERCISE PROBLEMS -- BIBLIOGRAPHY -- 5: Experimental Impact Mechanics -- 5.1 INTRODUCTION -- 5.2 QUASI-STATIC MATERIAL TESTS -- 5.3 PENDULUM IMPACT TESTS -- 5.4 ABOUT HIGH STRAIN RATE TESTING OF MATERIALS -- 5.5 SPLIT HOPKINSON'S PRESSURE BAR TEST -- 5.5.1 Historical Background and Significance -- 5.5.2 Improvements in SHPB Test Apparatus -- 5.5.3 Principle of SHPB Test -- 5.5.4 Theory Behind SHPB -- 5.5.5 Design of Pressure Bars for a SHPB Apparatus -- 5.5.6 Applications, Availability and Few Results -- 5.6 TAYLOR CYLINDER IMPACT TEST -- 5.6.1 Methodology -- 5.6.2 Strain Rates -- 5.6.3 Limitations and Improvements.
5.6.4 Case Study-1: Experiments with a Paraffin Wax -- 5.6.5 Case Study-2: Experiments with Steel Cylinders -- 5.7 DROP IMPACT TEST -- 5.7.1 Drop Specimen Test -- 5.7.1.1 Few Standards for DST by Free Fall -- 5.7.1.2 Experimental Setup for DST -- 5.7.1.3 DST Procedure -- 5.7.1.4 A Case Study: DST of a helicopter in NASA in a bid to improve safety -- 5.7.2 Drop Weight Test (DWT) -- 5.7.2.1 Experimental Setup for DWT -- 5.7.2.2 Case Study-1: DWT to study fracture process in structural concrete -- 5.7.2.3 Case Study-2: DWT tower for applying both compressive and tensile dynamic loads -- 5.8 SUMMARY -- EXERCISE PROBLEMS -- REFERENCES -- 6: Modeling Deformation and Failure Under Impact -- 6.1 INTRODUCTION -- 6.2 EQUATION OF STATE -- 6.2.1 Gruneisen Parameter -- 6.2.2 Shock-Hugoniot Curve -- 6.2.3 Rankine-Hugoniot Conditions -- 6.2.4 Mie-Gruneisen (Shock) Equation of State -- 6.2.4.1 Implementation of Mie-Gruneisen Equation of State -- 6.2.5 Murnaghan Equation of State -- 6.2.6 Linear Equation of State -- 6.2.7 Polynomial Equation of State -- 6.2.8 High Explosive Equation of State -- 6.3 CONSTITUTIVE MODELS FOR MATERIAL DEFORMATION AND PLASTICITY -- 6.3.1 Plasticity -- 6.3.2 Plastic Isotropic or Kinematic Hardening Material Model -- 6.3.3 Thermo-Elastic-Plastic Material Model -- 6.3.4 Power-Law Isotropic Plasticity Material Model -- 6.3.5 Johnson-Cook Material Model -- 6.3.5.1 Determination of Parameters in Johnson-Cook Material Model -- 6.3.6 Zerilli-Armstrong Material Model -- 6.3.6.1 Modified Zerilli-Armstrong Material Model -- 6.3.6.2 Determination of Parameters in Zerilli-Armstrong Material Model -- 6.3.7 Combined Johnson-Cook and Zerilli-Armstrong Material Model -- 6.3.8 Steinberg-Guinan Material Model -- 6.3.9 Barlat's 3 Parameter Plasticity Material Model -- 6.3.10 Orthotropic Material Model -- 6.3.11 Summary of Material Models.
6.4 FAILURE/DAMAGE MODELS -- 6.4.1 Void Growth and Fracture Strain Model -- 6.4.1.1 Void Growth Model -- 6.4.1.2 Fracture Strain Model -- 6.4.2 Johnson-Cook Failure Model -- 6.4.3 Unified Model of Visco-plasticity and Ductile Damage -- 6.4.4 Johnson-Holmquist Concrete Damage Model -- 6.4.4.1 Determination of Parameters in Johnson-Holmquist Concrete Damage Model -- 6.4.5 Chang-Chang Composite Damage Model -- 6.4.6 Orthotropic Damage Model -- 6.4.7 Plastic Strain Limit Damage Model -- 6.4.8 Material Stress/Strain Limit Damage Model -- 6.4.9 Implementation of Damage -- 6.4.9.1 Discrete Technique -- 6.4.9.2 Operator Split Technique -- 6.5 TEMPERATURE RISE DURING IMPACT -- 6.6 SUMMARY -- EXERCISE PROBLEMS -- REFERENCES -- 7: Computational Impact Mechanics -- 7.1 INTRODUCTION -- 7.2 PRINCIPLES OF NUMERICAL FORMULATIONS -- 7.2.1 Classical Continuum Methods: Lagrangean, Eulerian and Arbitrary Lagrangean-Eulerian -- 7.2.1.1 Lagrangean Formulation -- 7.2.1.2 Eulerian Formulation -- 7.2.1.3 Arbitrary Lagrangean- Eulerian Coupling (ALE-Formulation) -- 7.2.2 Particle Based Methods -- 7.2.2.1 Smooth Particle Hydrodynamics Method -- 7.2.2.2 Discrete Element Method -- 7.2.3 Meshless Methods -- 7.2.4 Hybrid Particle and Mesh based Methods -- 7.3 NUMERICAL SIMULATION USING FINITE ELEMENT METHODS -- 7.4 NUMERICAL INTEGRATION METHODS -- 7.4.1 Implicit Integration -- 7.4.2 Explicit Integration -- 7.4.3 Application of Integration Schemes and Material Response -- 7.5 COMPUTATIONAL ASPECTS IN NUMERICAL SIMULATION -- 7.5.1 Hour Glass Deformations and Control -- 7.5.1.1 Hour Glass Deformations -- 7.5.1.2 Hour Glass Control -- 7.5.2 Shockwaves, Numerical Shockwaves and Artificial Viscosity -- 7.5.2.1 Shockwaves -- 7.5.2.2 Numerical Shockwaves -- 7.5.2.3 Artificial Viscosity -- 7.5.3 Acoustic Impedance -- 7.5.4 Adaptive Meshing -- 7.5.5 Contact-Impact Considerations.
7.5.5.1 Kinematic Constraint Method -- 7.5.5.2 Penalty Method -- 7.5.5.3 Distributed Parameter Method -- 7.5.5.4 Automatic Surface to Surface Contact -- 7.5.5.5 Initial Contact Interpenetrations -- 7.5.5.6 Friction in Sliding Interfaces -- 7.6 CASE STUDIES IN NUMERICAL SIMULATION -- 7.6.1 Case-1: Simulation of Ballistic Impact on a Plate with a Simple Plasticity Model -- 7.6.2 Case-2: Simulation of Plugging Failure with a Unified Material and Damage Model -- 7.6.3 Case-3: Simulation of Ballistic Impact of a Steel Bullet on a GFRP Plate -- 7.6.4 Case-4: Discrete Element Method for Simulation of Ballistic Impact in 1-D Domain -- 7.7 SUMMARY -- EXERCISE PROBLEMS -- REFERENCES -- 8: Vehicle Collision -- 8.1 INTRODUCTION -- 8.2 MECHANICS OF VEHICLE COLLISION -- 8.3 CRASH IMPACT TESTS FOR SAFETY REGULATIONS -- 8.3.1 Crash Impact Tests -- 8.3.1.1 Frontal Crash Impact Test -- 8.3.1.2 Side Crash Impact Test -- 8.3.1.3 Rear Crash Impact Test -- 8.3.1.4 Pedestrian Impact Test -- 8.3.1.5 Roll-over Crash Impact Test -- 8.3.2 Data Acquisition and Filtering in Crash Impact Tests -- 8.3.3 Vehicle Safety Regulations in India -- 8.4 CONCEPTS IN ANALYSIS OF VEHICLE/OCCUPANT SYSTEMS -- 8.4.1 Introduction -- 8.4.2 Analysis of Frontal Rigid Barrier Collision (Frontal Impact Crash) -- 8.4.3 Vehicle Response in Frontal Barrier Collision -- 8.4.4 Equivalent Square Wave (ESW) and Pulse Waveform Efficiency (ŋ) -- 8.4.4.1 Equivalent Square Wave (ESW) -- 8.4.4.2 Pulse Waveform Efficiency (ŋ) -- 8.4.5 Occupant Response in Frontal Barrier Collision -- 8.4.5.1 Occupant Response in a General Braking Vehicle -- 8.4.5.2 Unrestrained Occupant Response in a Braking Vehicle -- 8.4.5.3 Unrestrained Occupant Response in a Crashing Vehicle -- 8.4.5.4 Restrained Occupant Response in a Crashing Vehicle -- 8.4.5.5 Effect of Occupant Restraint in a Crashing Vehicle.
8.4.6 Guidelines for Design and Evaluation of a Good Occupant Restraint System.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Preface -- Contents -- List of Figures -- List of Tables -- List of Symbols -- 1: Introduction -- 1.1 GENERAL INTRODUCTION TO ENGINEERING MECHANICS -- 1.2 GENERAL INTRODUCTION TO FRACTURE MECHANICS -- 1.3 IMPACT MECHANICS - Appreciating Impact Problems In Engineering -- 1.4 HISTORICAL BACKGROUND -- 1.5 PERCUSSION, CONCUSSION, COLLISION AND EXPLOSION -- 1.6 SUMMARY -- BIBLIOGRAPHY -- 2: Rigid Body Impact Mechanics -- 2.1 INTRODUCTION -- 2.2 IMPULSE - MOMENTUM EQUATIONS -- 2.3 COEFFICIENT OF RESTITUTION - CLASSICAL DEFINITIONS -- 2.3.1 Kinematic Coefficient of Restitution -- 2.3.2 Measurement of Coefficient of Restitution -- 2.3.3 Relative Assessment of Various Impacts in Sports -- 2.4 COEFFICIENT OF RESTITUTION - ALTERNATE DEFINITION -- 2.4.1 Kinetic Coefficient of Restitution -- 2.4.1.1 Case Study: Rebound of Colliding Vehicles -- 2.4.2 Energy Coefficient of Restitution -- 2.4.2.1 Application in Vehicle Collisions -- 2.5 OBLIQUE IMPACT - ROLE OF FRICTION -- 2.6 LIMITATIONS OF RIGID BODY IMPACT MECHANICS -- 2.7 SUMMARY -- EXERCISE PROBLEMS -- BIBLIOGRAPHY -- 3: One-Dimensional Impact Mechanics of Deformable Bodies -- 3.1 INTRODUCTION -- 3.2 SINGLE DEGREE OF FREEDOM IDEALIZATION OF IMPACT PROCESS -- 3.2.1 Governing Equations of Single Degree of Freedom (SDOF) System -- 3.2.2 Forced Vibrations due to Exponentially Decaying Loads -- 3.3 1-D WAVE PROPAGATION IN SOLIDS INDUCED BY IMPACT -- 3.3.1 Longitudinal Waves in Thin Rods -- 3.3.1.1 The Governing Equation for Waves in Long Rods -- 3.3.1.2 Free Vibrations in a Finite Rod -- 3.3.2 Flexural Waves in Thin Rods -- 3.3.2.1 The Governing Equation for Flexural Waves in Rods -- 3.3.2.2 Free Vibrations of Finite Beams -- 3.3.3 The D'Alembert's Solution for Wave Equation -- 3.4 SUMMARY -- EXERCISE PROBLEMS -- BIBLIOGRAPHY.

4: Multi-Dimensional Impact Mechanics of Deformable Bodies -- 4.1 INTRODUCTION -- 4.2 ANALYSIS OF STRESS -- 4.2.1 Stress Components on an Arbitrary Plane -- 4.2.2 Principal Stresses and Stress Invariants -- 4.2.3 Mohr's Circles -- 4.2.4 Octahedral Stresses -- 4.2.5 Decomposition into Hydrostatic and Pure Shear States -- 4.2.6 Equations of Motion of a Body in Cartesian Coordinates -- 4.2.7 Equations of Motion of a Body in Cylindrical Coordinates -- 4.2.8 Equations of Motion of a Body in Spherical Coordinates -- 4.3 ANALYSIS OF STRAIN -- 4.3.1 Deformation in the Neighborhood of a Point -- 4.3.2 Compatibility Equations -- 4.3.3 Strain Deviator -- 4.4 LINEARISED STRESS-STRAIN RELATIONS -- 4.4.1 Stress-Strain Relations for Isotropic Materials -- 4.5 WAVES IN INFINITE MEDIUM -- 4.5.1 Longitudinal Waves (Primary/Dilatational/Irrotational Waves) -- 4.5.1.1 Longitudinal Waves -- 4.5.1.2 The Governing Equations for Longitudinal Waves (Graff, 1991) -- 4.5.2 Transverse Waves (Secondary/Shear/Distortional/Rotational Wave) -- 4.5.2.1 Transverse Waves -- 4.5.2.2 The Governing Equations for Transverse Waves -- 4.6 WAVES IN SEMI-INFINITE MEDIA -- 4.6.1 Surface Waves -- 4.6.2 Symmetric Rayleigh-Lamb Spectrum in Elastic Layer (Graff, 1991) -- 4.7 SUMMARY -- EXERCISE PROBLEMS -- BIBLIOGRAPHY -- 5: Experimental Impact Mechanics -- 5.1 INTRODUCTION -- 5.2 QUASI-STATIC MATERIAL TESTS -- 5.3 PENDULUM IMPACT TESTS -- 5.4 ABOUT HIGH STRAIN RATE TESTING OF MATERIALS -- 5.5 SPLIT HOPKINSON'S PRESSURE BAR TEST -- 5.5.1 Historical Background and Significance -- 5.5.2 Improvements in SHPB Test Apparatus -- 5.5.3 Principle of SHPB Test -- 5.5.4 Theory Behind SHPB -- 5.5.5 Design of Pressure Bars for a SHPB Apparatus -- 5.5.6 Applications, Availability and Few Results -- 5.6 TAYLOR CYLINDER IMPACT TEST -- 5.6.1 Methodology -- 5.6.2 Strain Rates -- 5.6.3 Limitations and Improvements.

5.6.4 Case Study-1: Experiments with a Paraffin Wax -- 5.6.5 Case Study-2: Experiments with Steel Cylinders -- 5.7 DROP IMPACT TEST -- 5.7.1 Drop Specimen Test -- 5.7.1.1 Few Standards for DST by Free Fall -- 5.7.1.2 Experimental Setup for DST -- 5.7.1.3 DST Procedure -- 5.7.1.4 A Case Study: DST of a helicopter in NASA in a bid to improve safety -- 5.7.2 Drop Weight Test (DWT) -- 5.7.2.1 Experimental Setup for DWT -- 5.7.2.2 Case Study-1: DWT to study fracture process in structural concrete -- 5.7.2.3 Case Study-2: DWT tower for applying both compressive and tensile dynamic loads -- 5.8 SUMMARY -- EXERCISE PROBLEMS -- REFERENCES -- 6: Modeling Deformation and Failure Under Impact -- 6.1 INTRODUCTION -- 6.2 EQUATION OF STATE -- 6.2.1 Gruneisen Parameter -- 6.2.2 Shock-Hugoniot Curve -- 6.2.3 Rankine-Hugoniot Conditions -- 6.2.4 Mie-Gruneisen (Shock) Equation of State -- 6.2.4.1 Implementation of Mie-Gruneisen Equation of State -- 6.2.5 Murnaghan Equation of State -- 6.2.6 Linear Equation of State -- 6.2.7 Polynomial Equation of State -- 6.2.8 High Explosive Equation of State -- 6.3 CONSTITUTIVE MODELS FOR MATERIAL DEFORMATION AND PLASTICITY -- 6.3.1 Plasticity -- 6.3.2 Plastic Isotropic or Kinematic Hardening Material Model -- 6.3.3 Thermo-Elastic-Plastic Material Model -- 6.3.4 Power-Law Isotropic Plasticity Material Model -- 6.3.5 Johnson-Cook Material Model -- 6.3.5.1 Determination of Parameters in Johnson-Cook Material Model -- 6.3.6 Zerilli-Armstrong Material Model -- 6.3.6.1 Modified Zerilli-Armstrong Material Model -- 6.3.6.2 Determination of Parameters in Zerilli-Armstrong Material Model -- 6.3.7 Combined Johnson-Cook and Zerilli-Armstrong Material Model -- 6.3.8 Steinberg-Guinan Material Model -- 6.3.9 Barlat's 3 Parameter Plasticity Material Model -- 6.3.10 Orthotropic Material Model -- 6.3.11 Summary of Material Models.

6.4 FAILURE/DAMAGE MODELS -- 6.4.1 Void Growth and Fracture Strain Model -- 6.4.1.1 Void Growth Model -- 6.4.1.2 Fracture Strain Model -- 6.4.2 Johnson-Cook Failure Model -- 6.4.3 Unified Model of Visco-plasticity and Ductile Damage -- 6.4.4 Johnson-Holmquist Concrete Damage Model -- 6.4.4.1 Determination of Parameters in Johnson-Holmquist Concrete Damage Model -- 6.4.5 Chang-Chang Composite Damage Model -- 6.4.6 Orthotropic Damage Model -- 6.4.7 Plastic Strain Limit Damage Model -- 6.4.8 Material Stress/Strain Limit Damage Model -- 6.4.9 Implementation of Damage -- 6.4.9.1 Discrete Technique -- 6.4.9.2 Operator Split Technique -- 6.5 TEMPERATURE RISE DURING IMPACT -- 6.6 SUMMARY -- EXERCISE PROBLEMS -- REFERENCES -- 7: Computational Impact Mechanics -- 7.1 INTRODUCTION -- 7.2 PRINCIPLES OF NUMERICAL FORMULATIONS -- 7.2.1 Classical Continuum Methods: Lagrangean, Eulerian and Arbitrary Lagrangean-Eulerian -- 7.2.1.1 Lagrangean Formulation -- 7.2.1.2 Eulerian Formulation -- 7.2.1.3 Arbitrary Lagrangean- Eulerian Coupling (ALE-Formulation) -- 7.2.2 Particle Based Methods -- 7.2.2.1 Smooth Particle Hydrodynamics Method -- 7.2.2.2 Discrete Element Method -- 7.2.3 Meshless Methods -- 7.2.4 Hybrid Particle and Mesh based Methods -- 7.3 NUMERICAL SIMULATION USING FINITE ELEMENT METHODS -- 7.4 NUMERICAL INTEGRATION METHODS -- 7.4.1 Implicit Integration -- 7.4.2 Explicit Integration -- 7.4.3 Application of Integration Schemes and Material Response -- 7.5 COMPUTATIONAL ASPECTS IN NUMERICAL SIMULATION -- 7.5.1 Hour Glass Deformations and Control -- 7.5.1.1 Hour Glass Deformations -- 7.5.1.2 Hour Glass Control -- 7.5.2 Shockwaves, Numerical Shockwaves and Artificial Viscosity -- 7.5.2.1 Shockwaves -- 7.5.2.2 Numerical Shockwaves -- 7.5.2.3 Artificial Viscosity -- 7.5.3 Acoustic Impedance -- 7.5.4 Adaptive Meshing -- 7.5.5 Contact-Impact Considerations.

7.5.5.1 Kinematic Constraint Method -- 7.5.5.2 Penalty Method -- 7.5.5.3 Distributed Parameter Method -- 7.5.5.4 Automatic Surface to Surface Contact -- 7.5.5.5 Initial Contact Interpenetrations -- 7.5.5.6 Friction in Sliding Interfaces -- 7.6 CASE STUDIES IN NUMERICAL SIMULATION -- 7.6.1 Case-1: Simulation of Ballistic Impact on a Plate with a Simple Plasticity Model -- 7.6.2 Case-2: Simulation of Plugging Failure with a Unified Material and Damage Model -- 7.6.3 Case-3: Simulation of Ballistic Impact of a Steel Bullet on a GFRP Plate -- 7.6.4 Case-4: Discrete Element Method for Simulation of Ballistic Impact in 1-D Domain -- 7.7 SUMMARY -- EXERCISE PROBLEMS -- REFERENCES -- 8: Vehicle Collision -- 8.1 INTRODUCTION -- 8.2 MECHANICS OF VEHICLE COLLISION -- 8.3 CRASH IMPACT TESTS FOR SAFETY REGULATIONS -- 8.3.1 Crash Impact Tests -- 8.3.1.1 Frontal Crash Impact Test -- 8.3.1.2 Side Crash Impact Test -- 8.3.1.3 Rear Crash Impact Test -- 8.3.1.4 Pedestrian Impact Test -- 8.3.1.5 Roll-over Crash Impact Test -- 8.3.2 Data Acquisition and Filtering in Crash Impact Tests -- 8.3.3 Vehicle Safety Regulations in India -- 8.4 CONCEPTS IN ANALYSIS OF VEHICLE/OCCUPANT SYSTEMS -- 8.4.1 Introduction -- 8.4.2 Analysis of Frontal Rigid Barrier Collision (Frontal Impact Crash) -- 8.4.3 Vehicle Response in Frontal Barrier Collision -- 8.4.4 Equivalent Square Wave (ESW) and Pulse Waveform Efficiency (ŋ) -- 8.4.4.1 Equivalent Square Wave (ESW) -- 8.4.4.2 Pulse Waveform Efficiency (ŋ) -- 8.4.5 Occupant Response in Frontal Barrier Collision -- 8.4.5.1 Occupant Response in a General Braking Vehicle -- 8.4.5.2 Unrestrained Occupant Response in a Braking Vehicle -- 8.4.5.3 Unrestrained Occupant Response in a Crashing Vehicle -- 8.4.5.4 Restrained Occupant Response in a Crashing Vehicle -- 8.4.5.5 Effect of Occupant Restraint in a Crashing Vehicle.

8.4.6 Guidelines for Design and Evaluation of a Good Occupant Restraint System.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.