ORPP logo
Image from Google Jackets

Self-Assembly : From Surfactants to Nanoparticles.

By: Material type: TextTextSeries: Wiley Series on Surface and Interfacial Chemistry SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2019Copyright date: ©2019Edition: 1st edDescription: 1 online resource (366 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119001393
Subject(s): Genre/Form: Additional physical formats: Print version:: Self-AssemblyDDC classification:
  • 572.33
LOC classification:
  • RS201.N35 .S454 2018
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Acknowledgments -- Chapter 1 Self‐Assembly from Surfactants to Nanoparticles - Head vs. Tail -- 1.1 Introduction -- 1.2 Classical Surfactants and Block Copolymers -- 1.2.1 Tanford Model for Surfactant Micelles -- 1.2.2 de Gennes Model for Block Copolymer Micelles -- 1.2.3 Surfactant Self‐Assembly Model Incorporating Tail Effects -- 1.2.4 Star Polymer Model of Block Copolymer Self‐Assembly Incorporating Headgroup Effects -- 1.2.5 Mean Field Model of Block Copolymer Self‐Assembly Incorporating Headgroup Effects -- 1.2.6 Tail Effects on Shape Transitions in Surfactant Aggregates -- 1.2.7 Headgroup Effects on Shape Transitions in Block Copolymer Aggregates -- 1.3 Self‐Assembly of Nonclassical Amphiphiles Based on Head−Tail Competition -- 1.3.1 Dendritic Amphiphiles -- 1.3.2 DNA Amphiphiles -- 1.3.3 Peptide Amphiphiles -- 1.3.4 Protein−Polymer Conjugates -- 1.3.5 Amphiphilic Nanoparticles -- 1.4 Conclusions -- Acknowledgments -- References -- Chapter 2 Self‐Assembly into Branches and Networks -- 2.1 Introduction -- 2.2 Rheology and Structure of Solutions Containing Wormlike Micelles -- 2.2.1 Viscoelasticity of Entangled Wormlike Micelles -- 2.2.2 Growth of Nonionic Micelles -- 2.2.3 Growth of Ionic Micelles -- 2.2.4 Persistence Length of an Ionic Micelle -- 2.2.5 Networks of Branched Micelles -- 2.2.6 Ion‐Specific Effect on Micellar Growth and Branching -- 2.3 Branching and Equilibrium Behavior of a Spatial Network -- 2.3.1 The Entropic Network of Chains -- 2.3.2 The Shape of Micellar Branch and the Free Energy -- 2.4 Conclusions -- Acknowledgments -- References -- Chapter 3 Self‐Assembly of Responsive Surfactants -- 3.1 Introduction -- 3.2 Redox‐Active Surfactants -- 3.2.1 Reversible Changes in Interfacial Properties.
3.2.2 Reversible Changes in Bulk Solution Properties -- 3.2.3 Control of Biomolecule‐Surfactant Assemblies -- 3.2.4 Spatial Control of Surfactant‐Based Properties -- 3.3 Light‐Responsive Surfactants -- 3.3.1 Interfacial Properties -- 3.3.2 Bulk Solution Properties -- 3.3.3 Biomolecule‐Surfactant Interactions -- 3.3.4 Spatial Control of Surfactant‐Based Properties Using Light -- 3.4 Conclusion -- Acknowledgments -- References -- Chapter 4 Self‐Assembly and Primitive Membrane Formation: Between Stability and Dynamism -- 4.1 Introduction -- 4.2 Basis of Self‐Assembly of Single‐Hydrocarbon‐Chain Amphiphiles -- 4.2.1 van der Waals Forces and Hydrophobic Effect -- 4.2.2 Headgroup‐to‐Headgroup Interactions -- 4.2.3 Interactions Between the Amphiphile Headgroups and Solute/Solvent Molecules -- 4.3 Types of Structures -- 4.3.1 Critical Aggregate Concentration -- 4.3.2 Packing Parameter -- 4.4 Self‐Assembly of a Single Type of Single‐Hydrocarbon‐Chain Amphiphile -- 4.4.1 Single Species of Single‐Hydrocarbon‐Chain Amphiphile -- 4.4.2 Mixtures of Single‐Hydrocarbon‐Chain Amphiphiles -- 4.4.2.1 Mixtures of Amphiphiles with the Same Functional Headgroups -- 4.4.2.2 Mixtures of Single‐Hydrocarbon Chain Amphiphiles and Neutral Co‐surfactants -- 4.4.2.3 Mixtures of Charged Single Hydrocarbon Chain Amphiphiles -- 4.4.2.4 Mixtures of Single‐Chain Amphiphiles and Lipids -- 4.4.3 Mixtures of Single‐Hydrocarbon‐Chain Amphiphiles and Other Molecules -- 4.4.4 Self‐Assembly on Surfaces -- 4.5 Catalysis Compartmentalization with Single‐Hydrocarbon‐Chain Amphiphiles -- 4.5.1 Enclosed Protocell Models -- 4.5.2 Interfacial Protocell Models -- 4.5.3 Membranes as Energy Transduction Systems -- 4.5.3.1 Linking Light Energy Harvesting and Chemical Conversion -- 4.5.3.2 Formation of Chemical Gradients.
4.5.3.3 Energy Harvesting and Its Conversion into High‐Energy Bonds of Phosphate‐Chemicals -- 4.6 Dynamism -- 4.7 Conclusion -- Acknowledgments -- References -- Chapter 5 Programming Micelles with Biomolecules -- 5.1 Introduction -- 5.2 Peptide‐Containing Micelles -- 5.2.1 Peptide Amphiphiles -- 5.2.2 Peptide−Polymer Amphiphiles (PPAs) -- 5.3 DNA‐Programmed Micelle Systems -- 5.3.1 Lipid‐Like DNA Amphiphiles -- 5.3.2 DNA−Polymer Amphiphiles -- 5.4 Summary -- References -- Chapter 6 Protein Analogous Micelles -- 6.1 Introduction -- 6.2 Physicochemical Properties of Peptide Amphiphiles -- 6.2.1 The Role of Secondary Structures in PAMs -- 6.2.2 The Role of Different Tails in PAMs -- 6.2.3 The Role of Multiple Headgroups in PAMs -- 6.2.4 Stabilizing Spherical Structures -- 6.2.5 Electrostatic Interactions -- 6.2.6 Mixed Micelles -- 6.2.7 Stimuli‐Responsive PAMs -- 6.3 PAMs in Biomedical Applications -- 6.3.1 Tissue Engineering and Regenerative Medicine -- 6.3.2 Diagnostic and Therapeutic PAMs -- 6.4 Conclusions -- Acknowledgments -- References -- Chapter 7 Self‐Assembly of Protein−Polymer Conjugates -- 7.1 Introduction -- 7.2 Helical Protein Copolymers -- 7.3 ‐Sheet Protein Copolymers -- 7.4 Cyclic Protein Copolymers -- 7.5 Coil‐Like Protein Copolymers -- 7.6 Globular Protein Copolymers -- 7.7 Outlook -- Acknowledgments -- References -- Chapter 8 Multiscale Modeling and Simulation of DNA‐Programmable Nanoparticle Assembly -- 8.1 Introduction -- 8.2 A Molecular Dynamics Study of a Scale‐Accurate Coarse‐Grained Model with Explicit DNA Chains -- 8.3 Thermally Active Hybridization -- 8.4 DNA‐Mediated Nanoparticle Crystallization in Wulff Polyhedra -- 8.5 Conclusions -- Acknowledgments -- References -- Chapter 9 Harnessing Self‐Healing Vesicles to Pick Up, Transport, and Drop Off Janus Particles -- 9.1 Introduction -- 9.2 Methodology.
9.3 Results and Discussion -- 9.3.1 Selective Pick‐Up of a Single Particle -- 9.3.1.1 Symmetric Janus Particles and Pure Hydrophilic Particles -- 9.3.1.2 Asymmetric Janus Particles -- 9.3.2 Interaction Between Multiple Particles and a Lipid Vesicle -- 9.3.3 Depositing Janus Particles on Patterned Surfaces -- 9.3.3.1 Step Trench -- 9.3.3.2 Wedge Trench -- 9.3.3.3 "Sticky" Stripe -- 9.4 Conclusions -- Acknowledgments -- References -- Chapter 10 Solution Self‐Assembly of Giant Surfactants: An Exploration on Molecular Architectures -- 10.1 Introduction -- 10.2 Molecular Architecture of Giant Surfactants -- 10.3 Giant Surfactants with Short Nonpolymeric Tails -- 10.4 Giant Surfactants with a Single Head and Single Polymer Tail -- 10.5 Giant Surfactants with Multiheads and Multitails -- 10.6 Giant Surfactants with Block Copolymer Tails -- 10.7 Conclusions -- Acknowledgments -- References -- Index -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Acknowledgments -- Chapter 1 Self‐Assembly from Surfactants to Nanoparticles - Head vs. Tail -- 1.1 Introduction -- 1.2 Classical Surfactants and Block Copolymers -- 1.2.1 Tanford Model for Surfactant Micelles -- 1.2.2 de Gennes Model for Block Copolymer Micelles -- 1.2.3 Surfactant Self‐Assembly Model Incorporating Tail Effects -- 1.2.4 Star Polymer Model of Block Copolymer Self‐Assembly Incorporating Headgroup Effects -- 1.2.5 Mean Field Model of Block Copolymer Self‐Assembly Incorporating Headgroup Effects -- 1.2.6 Tail Effects on Shape Transitions in Surfactant Aggregates -- 1.2.7 Headgroup Effects on Shape Transitions in Block Copolymer Aggregates -- 1.3 Self‐Assembly of Nonclassical Amphiphiles Based on Head−Tail Competition -- 1.3.1 Dendritic Amphiphiles -- 1.3.2 DNA Amphiphiles -- 1.3.3 Peptide Amphiphiles -- 1.3.4 Protein−Polymer Conjugates -- 1.3.5 Amphiphilic Nanoparticles -- 1.4 Conclusions -- Acknowledgments -- References -- Chapter 2 Self‐Assembly into Branches and Networks -- 2.1 Introduction -- 2.2 Rheology and Structure of Solutions Containing Wormlike Micelles -- 2.2.1 Viscoelasticity of Entangled Wormlike Micelles -- 2.2.2 Growth of Nonionic Micelles -- 2.2.3 Growth of Ionic Micelles -- 2.2.4 Persistence Length of an Ionic Micelle -- 2.2.5 Networks of Branched Micelles -- 2.2.6 Ion‐Specific Effect on Micellar Growth and Branching -- 2.3 Branching and Equilibrium Behavior of a Spatial Network -- 2.3.1 The Entropic Network of Chains -- 2.3.2 The Shape of Micellar Branch and the Free Energy -- 2.4 Conclusions -- Acknowledgments -- References -- Chapter 3 Self‐Assembly of Responsive Surfactants -- 3.1 Introduction -- 3.2 Redox‐Active Surfactants -- 3.2.1 Reversible Changes in Interfacial Properties.

3.2.2 Reversible Changes in Bulk Solution Properties -- 3.2.3 Control of Biomolecule‐Surfactant Assemblies -- 3.2.4 Spatial Control of Surfactant‐Based Properties -- 3.3 Light‐Responsive Surfactants -- 3.3.1 Interfacial Properties -- 3.3.2 Bulk Solution Properties -- 3.3.3 Biomolecule‐Surfactant Interactions -- 3.3.4 Spatial Control of Surfactant‐Based Properties Using Light -- 3.4 Conclusion -- Acknowledgments -- References -- Chapter 4 Self‐Assembly and Primitive Membrane Formation: Between Stability and Dynamism -- 4.1 Introduction -- 4.2 Basis of Self‐Assembly of Single‐Hydrocarbon‐Chain Amphiphiles -- 4.2.1 van der Waals Forces and Hydrophobic Effect -- 4.2.2 Headgroup‐to‐Headgroup Interactions -- 4.2.3 Interactions Between the Amphiphile Headgroups and Solute/Solvent Molecules -- 4.3 Types of Structures -- 4.3.1 Critical Aggregate Concentration -- 4.3.2 Packing Parameter -- 4.4 Self‐Assembly of a Single Type of Single‐Hydrocarbon‐Chain Amphiphile -- 4.4.1 Single Species of Single‐Hydrocarbon‐Chain Amphiphile -- 4.4.2 Mixtures of Single‐Hydrocarbon‐Chain Amphiphiles -- 4.4.2.1 Mixtures of Amphiphiles with the Same Functional Headgroups -- 4.4.2.2 Mixtures of Single‐Hydrocarbon Chain Amphiphiles and Neutral Co‐surfactants -- 4.4.2.3 Mixtures of Charged Single Hydrocarbon Chain Amphiphiles -- 4.4.2.4 Mixtures of Single‐Chain Amphiphiles and Lipids -- 4.4.3 Mixtures of Single‐Hydrocarbon‐Chain Amphiphiles and Other Molecules -- 4.4.4 Self‐Assembly on Surfaces -- 4.5 Catalysis Compartmentalization with Single‐Hydrocarbon‐Chain Amphiphiles -- 4.5.1 Enclosed Protocell Models -- 4.5.2 Interfacial Protocell Models -- 4.5.3 Membranes as Energy Transduction Systems -- 4.5.3.1 Linking Light Energy Harvesting and Chemical Conversion -- 4.5.3.2 Formation of Chemical Gradients.

4.5.3.3 Energy Harvesting and Its Conversion into High‐Energy Bonds of Phosphate‐Chemicals -- 4.6 Dynamism -- 4.7 Conclusion -- Acknowledgments -- References -- Chapter 5 Programming Micelles with Biomolecules -- 5.1 Introduction -- 5.2 Peptide‐Containing Micelles -- 5.2.1 Peptide Amphiphiles -- 5.2.2 Peptide−Polymer Amphiphiles (PPAs) -- 5.3 DNA‐Programmed Micelle Systems -- 5.3.1 Lipid‐Like DNA Amphiphiles -- 5.3.2 DNA−Polymer Amphiphiles -- 5.4 Summary -- References -- Chapter 6 Protein Analogous Micelles -- 6.1 Introduction -- 6.2 Physicochemical Properties of Peptide Amphiphiles -- 6.2.1 The Role of Secondary Structures in PAMs -- 6.2.2 The Role of Different Tails in PAMs -- 6.2.3 The Role of Multiple Headgroups in PAMs -- 6.2.4 Stabilizing Spherical Structures -- 6.2.5 Electrostatic Interactions -- 6.2.6 Mixed Micelles -- 6.2.7 Stimuli‐Responsive PAMs -- 6.3 PAMs in Biomedical Applications -- 6.3.1 Tissue Engineering and Regenerative Medicine -- 6.3.2 Diagnostic and Therapeutic PAMs -- 6.4 Conclusions -- Acknowledgments -- References -- Chapter 7 Self‐Assembly of Protein−Polymer Conjugates -- 7.1 Introduction -- 7.2 Helical Protein Copolymers -- 7.3 ‐Sheet Protein Copolymers -- 7.4 Cyclic Protein Copolymers -- 7.5 Coil‐Like Protein Copolymers -- 7.6 Globular Protein Copolymers -- 7.7 Outlook -- Acknowledgments -- References -- Chapter 8 Multiscale Modeling and Simulation of DNA‐Programmable Nanoparticle Assembly -- 8.1 Introduction -- 8.2 A Molecular Dynamics Study of a Scale‐Accurate Coarse‐Grained Model with Explicit DNA Chains -- 8.3 Thermally Active Hybridization -- 8.4 DNA‐Mediated Nanoparticle Crystallization in Wulff Polyhedra -- 8.5 Conclusions -- Acknowledgments -- References -- Chapter 9 Harnessing Self‐Healing Vesicles to Pick Up, Transport, and Drop Off Janus Particles -- 9.1 Introduction -- 9.2 Methodology.

9.3 Results and Discussion -- 9.3.1 Selective Pick‐Up of a Single Particle -- 9.3.1.1 Symmetric Janus Particles and Pure Hydrophilic Particles -- 9.3.1.2 Asymmetric Janus Particles -- 9.3.2 Interaction Between Multiple Particles and a Lipid Vesicle -- 9.3.3 Depositing Janus Particles on Patterned Surfaces -- 9.3.3.1 Step Trench -- 9.3.3.2 Wedge Trench -- 9.3.3.3 "Sticky" Stripe -- 9.4 Conclusions -- Acknowledgments -- References -- Chapter 10 Solution Self‐Assembly of Giant Surfactants: An Exploration on Molecular Architectures -- 10.1 Introduction -- 10.2 Molecular Architecture of Giant Surfactants -- 10.3 Giant Surfactants with Short Nonpolymeric Tails -- 10.4 Giant Surfactants with a Single Head and Single Polymer Tail -- 10.5 Giant Surfactants with Multiheads and Multitails -- 10.6 Giant Surfactants with Block Copolymer Tails -- 10.7 Conclusions -- Acknowledgments -- References -- Index -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.