ORPP logo
Image from Google Jackets

Rheology and Processing of Polymer Nanocomposites.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2016Copyright date: ©2016Edition: 1st edDescription: 1 online resource (619 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118969823
Subject(s): Genre/Form: Additional physical formats: Print version:: Rheology and Processing of Polymer NanocompositesDDC classification:
  • 620.192
LOC classification:
  • QC189.5 .R524 2016
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Chapter 1 Materials for Polymer Nanocomposites -- 1.1 Introduction -- 1.2 Nanocomposite Framework -- 1.2.1 Nanoscale Fillers -- 1.2.2 Choice of Polymeric Matrices -- 1.3 Recent Developments and Opportunities in the Area of Polymer Nanocomposites -- 1.4 Challenges in the Area of Polymer Nanocomposites -- 1.5 Relationships of Macroscopic Rheological Properties to Nanoscale Structural Variables -- 1.6 Conclusion -- Acknowledgments -- References -- Chapter 2 Manufacturing Polymer Nanocomposites -- 2.1 Introduction -- 2.2 Nanofillers -- 2.2.1 Structure and Properties of Clay -- 2.2.2 Structure and Properties of Organically Modified Clay -- 2.2.3 Structure and Properties of CNTs -- 2.3 Polymer Matrices -- 2.4 Preparation of Nanocomposites -- 2.4.1 In Situ Polymerization -- 2.4.2 Solution Blending -- 2.4.3 Melt Compounding -- 2.4.4 Other Methods -- 2.4.5 Supercritical CO2 Assisted Compounding -- 2.5 Characterization -- 2.6 Conclusions -- References -- Chapter 3 Rheology and Processing of Polymer Nanocomposites: Theory, Practice, and New Challenges -- 3.1 Introduction -- 3.2 Viscoelasticity of Nanocomposites -- 3.2.1 General Trends -- 3.2.2 Percolation Treshold -- 3.2.3 Equilibrium Shear Modulus -- 3.2.4 Validity of TTS Principle -- 3.2.5 Quantifying Dispersion via Melt Rheology -- 3.2.6 Payne Effect -- 3.3 Flow Properties of Nanocomposites -- 3.3.1 Steady-State Flow Curves: Relative Viscosity and Normal Stress Difference -- 3.3.2 Flow-Induced Structure in Nanocomposites -- 3.3.3 Elongational Flow -- 3.4 Theory and Modeling of Nanocomposites Rheology -- 3.4.1 Steady-State Viscosity -- 3.4.2 Dynamic Rheology -- 3.4.3 Elongational Rheology -- 3.4.4 Payne Effect -- 3.5 Processing of Nanocomposites -- 3.5.1 Influence of Blending Procedure -- 3.5.2 Usual Processing Methods.
3.5.3 New Processing Routes -- 3.6 Conclusion and Futures Challenges -- Acknowledgments -- References -- Chapter 4 Mixing of Polymers Using the Elongational Flow Mixer (RMX®) -- 4.1 Introduction -- 4.2 Polymer Blends -- 4.2.1 Capillary Number, Ca -- 4.2.2 Rheology and Processing of Polymer Blends -- 4.3 Polymer Nanocomposites -- 4.3.1 Dispersion of Solid Additives -- 4.4 Elongational Flow Mixer (RMX®) -- 4.4.1 RMX® Assembly and Operating Principles -- 4.4.2 RMX® Flow Analysis by Numeric Simulation -- 4.4.3 Estimation of Rheological Parameters in the RMX® via Capillary Rheometry -- 4.5 RMX® Mixing of Polymer Blends -- 4.5.1 Influence of the RMX® Parameters on Mixing -- 4.5.2 Influence of the Viscosity Ratio, p -- 4.5.3 Energy of Mixing: Performance Comparison -- 4.5.4 Viscous Heating -- 4.5.5 Effect of a Compatibilizer -- 4.5.6 Rheology/Morphology Relationship -- 4.6 Mixing of Polymer Nanocomposites -- 4.7 Concluding Remarks -- References -- Chapter 5 Rheology and Processing of Polymer/Layered Silicate Nanocomposites -- 5.1 Introduction -- 5.2 Nanostructure Development -- 5.2.1 Melt Intercalation -- 5.2.2 Interlayer Structure of OMLFs and Intercalation -- 5.3 Novel Compounding Methods for Delamination of OMLFs -- 5.3.1 Solid-State Shear Processing -- 5.4 Nanostructure and Rheological Properties -- 5.4.1 Flocculation Control and Modulus Enhancement -- 5.4.2 Linear Viscoelastic Properties -- 5.4.3 Relaxation Rate and Crystallization -- 5.4.4 Nonlinear Shear Response -- 5.4.5 Analogy to Soft Colloids -- 5.4.6 Reversibility of Network Formation Process -- 5.4.7 Alignment of Silicate Layers in Networks -- 5.5 Nanocomposite Foams -- 5.5.1 Foam Processing Using Supercritical CO2 -- 5.5.2 PLA-Based Nanocomposite Foams -- 5.5.3 Polyethylene Ionomer-Based Nanocomposite Foams by MuCell® Injection Molding -- 5.6 Future Prospects -- References.
Chapter 6 Processing and Rheological Behaviors of CNT/Polymer Nanocomposites -- 6.1 Introduction -- 6.2 Processing Techniques of Polymer/CNT Nanocomposites -- 6.2.1 Solution Processing -- 6.2.2 Dry Powder, Wet, and Partial Solution Mixing -- 6.2.3 In Situ Polymerization -- 6.2.4 Melt Blending -- 6.3 Rheological Properties of Polymer/Carbon Nanotube Composites -- 6.3.1 Dilute Regime -- 6.3.2 Semidilute Regime -- 6.4 Summary -- Acknowledgment -- References -- Chapter 7 Unusual Phase Separation in PS Rich Blends with PVME in Presence of MWNTs -- 7.1 Introduction -- 7.2 Experimental Methods -- 7.2.1 Materials and Sample Preparation -- 7.2.2 Characterization -- 7.3 Theory Background -- 7.4 Results and Discussion -- 7.4.1 Rheologically Determined Demixing Temperature -- 7.4.2 Evolution of Morphology in the Blends in Presence of MWNTs -- 7.5 Conclusions -- Acknowledgements -- References -- Chapter 8 Rheology and Processing of Polymer/POSS Nanocomposites -- 8.1 Introduction -- 8.2 Polyhedral Oligomeric Silsesquioxanes -- 8.2.1 General Interactions between Polymer Matrices and POSS Particles -- 8.3 Processing of Polymer/POSS Nanocomposites -- 8.3.1 Polyolefin/POSS Nanocomposites -- 8.3.2 Polyamide/POSS Nanocomposites -- 8.3.3 Polyurethane/POSS Nanocomposites -- 8.3.4 Other Polymer/POSS Nanocomposites -- 8.4 Rheological Behavior of POSS-Based Polymer Nanocomposites -- 8.5 Conclusions -- Acknowledgments -- References -- Chapter 9 Polymer and Composite Nanofiber: Electrospinning Parameters and Rheology Properties -- 9.1 Introduction -- 9.2 Electrospinning -- 9.3 Electrospinning Process Parameters -- 9.3.1 Solution Properties -- 9.3.2 Operating Conditions -- 9.3.3 Process Conditions -- 9.4 Polymer-Based Nanofiber and its Rheology -- 9.5 Nanofiber and its Polymer Composites -- 9.6 Conclusion -- References.
Chapter 10 Rheology and Processing of Inorganic Nanomaterials and Quantum Dots/Polymer Nanocomposites -- 10.1 Inorganic Nanoparticle Filled Polymer Nanocomposites -- 10.2 Fabrication of Inorganic Nanoparticle Filled Polymer Nanocomposites -- 10.3 Why Rheological Study is Important for Polymer Nanocomposites -- 10.3.1 Assessment of the Dispersion Quality -- 10.3.2 Assessment of Processability -- 10.3.3 Assessment of Correlation between Molecular Structure and Dynamics of Polymers (Structure-Property Relationship) -- 10.4 Rheology of Quantum Dot Based Polymer Nanocomposites -- 10.5 Metal Oxide Nanoparticle-Based Polymer Nanocomposites -- 10.5.1 Alumina -- 10.5.2 Silica -- 10.5.3 Titania -- 10.5.4 Zinc Oxide -- 10.5.5 Ferrite Nanoparticles -- 10.5.6 Calcium Carbonate -- 10.6 Conclusion -- References -- Chapter 11 Rheology and Processing of Laponite/Polymer Nanocomposites -- 11.1 Introduction -- 11.2 Rheology -- 11.2.1 Linear Viscoelastic Properties -- 11.2.2 Nonlinear Viscoelastic Properties -- 11.3 Processing -- 11.3.1 Melt Blending -- 11.3.2 Solution Blending -- 11.3.3 In Situ Polymerization -- 11.4 Conclusions and Outlook -- Acknowledgement -- References -- Chapter 12 Graphene-Based Nanocomposites: Mechanical, Thermal, Electrical, and Rheological Properties -- 12.1 Introduction -- 12.2 Graphene -- 12.3 The Use of Graphene in Nanocomposite Materials -- 12.3.1 Problematic -- 12.3.2 Manufacturing Technique of Graphene-Based Nanocomposites -- 12.4 Nanocomposite Characterization -- 12.4.1 Structural Properties of Graphene Nanocomposites -- 12.4.2 Thermal Stability -- 12.4.3 Crystallization and Melting Properties -- 12.4.4 Mechanical Properties -- 12.4.5 Rheological Properties -- 12.4.6 Electrical Properties -- 12.5 Conclusion -- 12.6 Future Perspective -- References.
Chapter 13 Processing, Rheology, and Electrical Properties of Polymer/Nanocarbon Black Composites -- 13.1 Introduction -- 13.2 Experimental -- 13.2.1 Sample Preparation -- 13.2.2 Characterization Techniques -- 13.3 Electrical Properties of Carbon Black Composites and Applications -- 13.3.1 DC Conductivity -- 13.3.2 AC Conductivity -- 13.3.3 Positive Temperature Coefficient in Resistivity -- 13.4 Conclusion -- References -- Chapter 14 Rheology and Processing of Nanocellulose, Nanochitin, and Nanostarch/Polymer Bionanocomposites -- 14.1 Introduction -- 14.2 Biopolymers as Nanofillers for Polymer/Nanocomposites -- 14.2.1 Nanocellulose -- 14.2.2 Processing of Nanocellulose/Polymer Nanocomposites -- 14.2.3 Nanochitin -- 14.2.4 Processing of Nanochitin/Polymer Nanocomposites -- 14.2.5 Nanostarch -- 14.2.6 Processing of Nanostarch/Polymer Nanocomposites -- 14.3 Potential Applications of Polysaccharide Nanofillers/Polymer Nanocomposites -- 14.4 Conclusions and Future Perspectives -- References -- Chapter 15 Rheology and Processing of Nanoparticle Filled Polymer Blend Nanocomposites -- 15.1 Rheology of Polymer Blends -- 15.1.1 Miscible Blends -- 15.1.2 Immiscible Blends -- 15.1.3 Partially Miscible Blends -- 15.2 Effect of Nanoparticles on the Morphology of Polymer Blend -- 15.2.1 Selective Distribution -- 15.2.2 Phase Separation -- 15.3 Rheology of Nanoparticles Filled Polymer Blend -- 15.3.1 Viscoelasticity of Partially Miscible Systems -- 15.3.2 Viscoelasticity of Polymer Blend Nanocomposites -- 15.4 Summary -- References -- Chapter 16 Rheology as a Tool for Studying In Situ Polymerized Carbon Nanotube Nanocomposites -- 16.1 Introduction -- 16.2 Basic Principles of Rheokinetics -- 16.2.1 Systemic Rheology: Couette Analogy/Mixer-Type Rheology -- 16.2.2 A Couette-Type Rheoreactor for the Kinetics of In Situ Polymerization.
16.3 Rheokinetics of In Situ Polymerization of Carbon Nanotube/Monomer Systems.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Chapter 1 Materials for Polymer Nanocomposites -- 1.1 Introduction -- 1.2 Nanocomposite Framework -- 1.2.1 Nanoscale Fillers -- 1.2.2 Choice of Polymeric Matrices -- 1.3 Recent Developments and Opportunities in the Area of Polymer Nanocomposites -- 1.4 Challenges in the Area of Polymer Nanocomposites -- 1.5 Relationships of Macroscopic Rheological Properties to Nanoscale Structural Variables -- 1.6 Conclusion -- Acknowledgments -- References -- Chapter 2 Manufacturing Polymer Nanocomposites -- 2.1 Introduction -- 2.2 Nanofillers -- 2.2.1 Structure and Properties of Clay -- 2.2.2 Structure and Properties of Organically Modified Clay -- 2.2.3 Structure and Properties of CNTs -- 2.3 Polymer Matrices -- 2.4 Preparation of Nanocomposites -- 2.4.1 In Situ Polymerization -- 2.4.2 Solution Blending -- 2.4.3 Melt Compounding -- 2.4.4 Other Methods -- 2.4.5 Supercritical CO2 Assisted Compounding -- 2.5 Characterization -- 2.6 Conclusions -- References -- Chapter 3 Rheology and Processing of Polymer Nanocomposites: Theory, Practice, and New Challenges -- 3.1 Introduction -- 3.2 Viscoelasticity of Nanocomposites -- 3.2.1 General Trends -- 3.2.2 Percolation Treshold -- 3.2.3 Equilibrium Shear Modulus -- 3.2.4 Validity of TTS Principle -- 3.2.5 Quantifying Dispersion via Melt Rheology -- 3.2.6 Payne Effect -- 3.3 Flow Properties of Nanocomposites -- 3.3.1 Steady-State Flow Curves: Relative Viscosity and Normal Stress Difference -- 3.3.2 Flow-Induced Structure in Nanocomposites -- 3.3.3 Elongational Flow -- 3.4 Theory and Modeling of Nanocomposites Rheology -- 3.4.1 Steady-State Viscosity -- 3.4.2 Dynamic Rheology -- 3.4.3 Elongational Rheology -- 3.4.4 Payne Effect -- 3.5 Processing of Nanocomposites -- 3.5.1 Influence of Blending Procedure -- 3.5.2 Usual Processing Methods.

3.5.3 New Processing Routes -- 3.6 Conclusion and Futures Challenges -- Acknowledgments -- References -- Chapter 4 Mixing of Polymers Using the Elongational Flow Mixer (RMX®) -- 4.1 Introduction -- 4.2 Polymer Blends -- 4.2.1 Capillary Number, Ca -- 4.2.2 Rheology and Processing of Polymer Blends -- 4.3 Polymer Nanocomposites -- 4.3.1 Dispersion of Solid Additives -- 4.4 Elongational Flow Mixer (RMX®) -- 4.4.1 RMX® Assembly and Operating Principles -- 4.4.2 RMX® Flow Analysis by Numeric Simulation -- 4.4.3 Estimation of Rheological Parameters in the RMX® via Capillary Rheometry -- 4.5 RMX® Mixing of Polymer Blends -- 4.5.1 Influence of the RMX® Parameters on Mixing -- 4.5.2 Influence of the Viscosity Ratio, p -- 4.5.3 Energy of Mixing: Performance Comparison -- 4.5.4 Viscous Heating -- 4.5.5 Effect of a Compatibilizer -- 4.5.6 Rheology/Morphology Relationship -- 4.6 Mixing of Polymer Nanocomposites -- 4.7 Concluding Remarks -- References -- Chapter 5 Rheology and Processing of Polymer/Layered Silicate Nanocomposites -- 5.1 Introduction -- 5.2 Nanostructure Development -- 5.2.1 Melt Intercalation -- 5.2.2 Interlayer Structure of OMLFs and Intercalation -- 5.3 Novel Compounding Methods for Delamination of OMLFs -- 5.3.1 Solid-State Shear Processing -- 5.4 Nanostructure and Rheological Properties -- 5.4.1 Flocculation Control and Modulus Enhancement -- 5.4.2 Linear Viscoelastic Properties -- 5.4.3 Relaxation Rate and Crystallization -- 5.4.4 Nonlinear Shear Response -- 5.4.5 Analogy to Soft Colloids -- 5.4.6 Reversibility of Network Formation Process -- 5.4.7 Alignment of Silicate Layers in Networks -- 5.5 Nanocomposite Foams -- 5.5.1 Foam Processing Using Supercritical CO2 -- 5.5.2 PLA-Based Nanocomposite Foams -- 5.5.3 Polyethylene Ionomer-Based Nanocomposite Foams by MuCell® Injection Molding -- 5.6 Future Prospects -- References.

Chapter 6 Processing and Rheological Behaviors of CNT/Polymer Nanocomposites -- 6.1 Introduction -- 6.2 Processing Techniques of Polymer/CNT Nanocomposites -- 6.2.1 Solution Processing -- 6.2.2 Dry Powder, Wet, and Partial Solution Mixing -- 6.2.3 In Situ Polymerization -- 6.2.4 Melt Blending -- 6.3 Rheological Properties of Polymer/Carbon Nanotube Composites -- 6.3.1 Dilute Regime -- 6.3.2 Semidilute Regime -- 6.4 Summary -- Acknowledgment -- References -- Chapter 7 Unusual Phase Separation in PS Rich Blends with PVME in Presence of MWNTs -- 7.1 Introduction -- 7.2 Experimental Methods -- 7.2.1 Materials and Sample Preparation -- 7.2.2 Characterization -- 7.3 Theory Background -- 7.4 Results and Discussion -- 7.4.1 Rheologically Determined Demixing Temperature -- 7.4.2 Evolution of Morphology in the Blends in Presence of MWNTs -- 7.5 Conclusions -- Acknowledgements -- References -- Chapter 8 Rheology and Processing of Polymer/POSS Nanocomposites -- 8.1 Introduction -- 8.2 Polyhedral Oligomeric Silsesquioxanes -- 8.2.1 General Interactions between Polymer Matrices and POSS Particles -- 8.3 Processing of Polymer/POSS Nanocomposites -- 8.3.1 Polyolefin/POSS Nanocomposites -- 8.3.2 Polyamide/POSS Nanocomposites -- 8.3.3 Polyurethane/POSS Nanocomposites -- 8.3.4 Other Polymer/POSS Nanocomposites -- 8.4 Rheological Behavior of POSS-Based Polymer Nanocomposites -- 8.5 Conclusions -- Acknowledgments -- References -- Chapter 9 Polymer and Composite Nanofiber: Electrospinning Parameters and Rheology Properties -- 9.1 Introduction -- 9.2 Electrospinning -- 9.3 Electrospinning Process Parameters -- 9.3.1 Solution Properties -- 9.3.2 Operating Conditions -- 9.3.3 Process Conditions -- 9.4 Polymer-Based Nanofiber and its Rheology -- 9.5 Nanofiber and its Polymer Composites -- 9.6 Conclusion -- References.

Chapter 10 Rheology and Processing of Inorganic Nanomaterials and Quantum Dots/Polymer Nanocomposites -- 10.1 Inorganic Nanoparticle Filled Polymer Nanocomposites -- 10.2 Fabrication of Inorganic Nanoparticle Filled Polymer Nanocomposites -- 10.3 Why Rheological Study is Important for Polymer Nanocomposites -- 10.3.1 Assessment of the Dispersion Quality -- 10.3.2 Assessment of Processability -- 10.3.3 Assessment of Correlation between Molecular Structure and Dynamics of Polymers (Structure-Property Relationship) -- 10.4 Rheology of Quantum Dot Based Polymer Nanocomposites -- 10.5 Metal Oxide Nanoparticle-Based Polymer Nanocomposites -- 10.5.1 Alumina -- 10.5.2 Silica -- 10.5.3 Titania -- 10.5.4 Zinc Oxide -- 10.5.5 Ferrite Nanoparticles -- 10.5.6 Calcium Carbonate -- 10.6 Conclusion -- References -- Chapter 11 Rheology and Processing of Laponite/Polymer Nanocomposites -- 11.1 Introduction -- 11.2 Rheology -- 11.2.1 Linear Viscoelastic Properties -- 11.2.2 Nonlinear Viscoelastic Properties -- 11.3 Processing -- 11.3.1 Melt Blending -- 11.3.2 Solution Blending -- 11.3.3 In Situ Polymerization -- 11.4 Conclusions and Outlook -- Acknowledgement -- References -- Chapter 12 Graphene-Based Nanocomposites: Mechanical, Thermal, Electrical, and Rheological Properties -- 12.1 Introduction -- 12.2 Graphene -- 12.3 The Use of Graphene in Nanocomposite Materials -- 12.3.1 Problematic -- 12.3.2 Manufacturing Technique of Graphene-Based Nanocomposites -- 12.4 Nanocomposite Characterization -- 12.4.1 Structural Properties of Graphene Nanocomposites -- 12.4.2 Thermal Stability -- 12.4.3 Crystallization and Melting Properties -- 12.4.4 Mechanical Properties -- 12.4.5 Rheological Properties -- 12.4.6 Electrical Properties -- 12.5 Conclusion -- 12.6 Future Perspective -- References.

Chapter 13 Processing, Rheology, and Electrical Properties of Polymer/Nanocarbon Black Composites -- 13.1 Introduction -- 13.2 Experimental -- 13.2.1 Sample Preparation -- 13.2.2 Characterization Techniques -- 13.3 Electrical Properties of Carbon Black Composites and Applications -- 13.3.1 DC Conductivity -- 13.3.2 AC Conductivity -- 13.3.3 Positive Temperature Coefficient in Resistivity -- 13.4 Conclusion -- References -- Chapter 14 Rheology and Processing of Nanocellulose, Nanochitin, and Nanostarch/Polymer Bionanocomposites -- 14.1 Introduction -- 14.2 Biopolymers as Nanofillers for Polymer/Nanocomposites -- 14.2.1 Nanocellulose -- 14.2.2 Processing of Nanocellulose/Polymer Nanocomposites -- 14.2.3 Nanochitin -- 14.2.4 Processing of Nanochitin/Polymer Nanocomposites -- 14.2.5 Nanostarch -- 14.2.6 Processing of Nanostarch/Polymer Nanocomposites -- 14.3 Potential Applications of Polysaccharide Nanofillers/Polymer Nanocomposites -- 14.4 Conclusions and Future Perspectives -- References -- Chapter 15 Rheology and Processing of Nanoparticle Filled Polymer Blend Nanocomposites -- 15.1 Rheology of Polymer Blends -- 15.1.1 Miscible Blends -- 15.1.2 Immiscible Blends -- 15.1.3 Partially Miscible Blends -- 15.2 Effect of Nanoparticles on the Morphology of Polymer Blend -- 15.2.1 Selective Distribution -- 15.2.2 Phase Separation -- 15.3 Rheology of Nanoparticles Filled Polymer Blend -- 15.3.1 Viscoelasticity of Partially Miscible Systems -- 15.3.2 Viscoelasticity of Polymer Blend Nanocomposites -- 15.4 Summary -- References -- Chapter 16 Rheology as a Tool for Studying In Situ Polymerized Carbon Nanotube Nanocomposites -- 16.1 Introduction -- 16.2 Basic Principles of Rheokinetics -- 16.2.1 Systemic Rheology: Couette Analogy/Mixer-Type Rheology -- 16.2.2 A Couette-Type Rheoreactor for the Kinetics of In Situ Polymerization.

16.3 Rheokinetics of In Situ Polymerization of Carbon Nanotube/Monomer Systems.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.