Strength of Materials.
Material type:
- text
- computer
- online resource
- 9781617285844
- 620.1/12
- TA405 -- .S765 2009eb
Intro -- STRENGTH OF MATERIALS -- STRENGTH OF MATERIALS -- CONTENTS -- PREFACE -- Chapter 1HIGH TEMPERATURE MECHANICAL PROPERTIESAND MICROSTRUCTURE OF SIC-BASED FIBERSUNDER SEVERE ENVIRONMENTS -- Abstract -- 1. Introduction -- 2. Materials System and Characterization Technique -- 2.1. Materials System -- 2.2. Methodology -- 2.2.1. Single Fiber Tensile Test Technique -- 2.2.2. Bending Stress Relaxation Test -- 2.2.3. Microstructural Characterization -- 3. Basic Characteristics -- 3.1. Fiber Diameter Variation Analysis -- 3.1.1. Fiber Diameter Variation within a Tow -- 3.1.2. Fiber Diameter Variation along the Fiber Length -- 3.2. XRD Patterns -- 3.3. Tensile Properties and Fracture Surface -- 3.4. Correlation between Tensile Strength and Fiber Diameter -- 3.5. Correlation between Tensile Strength and Mirror Size -- 3.6. Fracture Toughness and Critical Fracture Energy -- 3.6.1. Fracture Toughness -- 3.6.2 Critical Fracture Energy -- 4. Mechanical Properties and Microstructure Under VariousEnvironments -- 4.1. Heat Treatment at Elevated Temperatures -- 4.1.1. Correlation between Tensile Strength, Crystal Size and HeatTreatment Temperatures -- 4.1.2. Microstructure -- 4.1.3. BSR Creep Resistance -- 4.1.4. Fracture Toughness and Critical Fracture Energy -- 4.2. Annealing and Creep in Various Oxygen Partial Pressures -- 4.2.1. Morphologies of Fibers -- (a) Under Annealing and Creep in Air -- (b) Under Annealing and Creep in HP-Ar -- (c) Under Annealing and Creep in UHP-Ar -- 4.2.2. Tensile Properties -- 4.2.3. Creep Resistance -- 4.3. Thermal Exposure Under Loading -- 4.3.1. Tensile Properties -- 4.3.2. Morphology -- 5. Tensile Creep Prediction by Long Time BSR Test -- 5.1. Bend Stress Relaxation and its Relation to the Tensile Creep -- 5.2. BSR Tests at Elevated Temperatures -- 5.3. Prediction of Tensile Creep from BSR Data -- 6. Conlusion.
Acknowledgements: -- References -- Chapter 2IONOMERS AS CANDIDATES FOR STRUCTURALMATERIALS -- Abstract -- Introduction -- Advantages/Disadvantages of Ions in Polymers -- Roles of Ions in Properties of Polymers -- Research in Ionic Polymers -- Ionomers as Stand-Alone Polymers -- Ionomers in Nanocomposites -- Ionomers as Blend Compatibilizers -- Commentary and Current and Future Directions of IonomerResearch in the Field of Structural Materials -- References -- Chapter3FAILUREOFLAYEREDCOMPOSITESSUBJECTTOIMPACTS:CONSTITUTIVEMODELINGANDPARAMETERIDENTIFICATIONISSUES -- Abstract -- 1.Introduction -- 2.DynamicsofLayeredComposites -- 2.1.GoverningRelations -- 2.2.ConstitutiveModeling -- 2.3.FiniteElementFormulation -- 2.4.TimeIntegration -- 3.ConstrainedSigma-pointKalmanFiltering -- 3.1.ParameterIdentificationviaJointKalmanFiltering -- 3.2.AccuracyofaConstrainedSigma-pointTransformation -- 4.Results -- 4.1.Pseudo-experimentalTestings -- 4.2.ActualExperimentalTestings -- 5.Conclusion -- References -- Chapter 4 CURRENT STATE OF THE ART OF THE CERAMIC COMPOSITE MATERIAL BIOLOX®DELTA -- Abstract -- 1. Introduction -- 2. International Material Standards -- ISO 6474 - 1 Implants for Surgery - Ceramic Materials - Part 1: Ceramic Materials Based on High Purity Alumina -- ISO 6474 - 2. Implants for Surgery - Ceramic Materials - Part 2: Composite Materials Based on a High Purity Alumina Matrix with Zirconia Reinforcement -- ISO 13 356. Implants for Surgery -Ceramic Materials Based on Yttria-Stabilized Tetragonal Zirconia (Y-TZP) -- 3. Description of BIOLOX®delta -- 4. Reinforcing Mechanism on BIOLOX®Delta -- Benefit of Phase Transformation -- Experiment: What Happens when Phase Transformation Is Suppressed? -- Stabilization of the Zirconia Tetragonal Phase -- 5. Material Production and Properties -- 6. Correlation of Material and Component Properties.
7. Wear Performance of BIOLOX®Delta -- 8. Discussion of Hydrothermal Aging -- Mechanism of Hydrothermal Aging -- Hydrothermal Aging in BIOLOX®delta -- Aging Kinetics of BIOLOX®delta -- Effect of Hydrothermal Aging on Strength of BIOLOX®delta -- References -- Chapter 5PARTICLE MODELING AND ITS CURRENT SUCCESSIN THE SIMULATIONS OF DYNAMICSFRAGMENTATION OF SOLIDS -- Abstract -- 1. Introduction -- 2. Methodology of PM -- 3. PM Applications: Success and Deficiencies -- 3.1. Success of PM Applications -- 3.1.1. Validation Work -- 3.1.2. Miscellaneous Applications -- (A) High Speed Collision and High Strain Rate Tension/Compressionof Material Blocks -- (B) Blasting Simulations -- (C) Crack Formation and Propagation in Different Materials -- (D) Thermally-Induced Breakage of Ores -- 3.2. Deficiencies of PM and Potential Solutions -- 4. Conclusion -- Acknowledgement -- References -- Chapter 6NON-ORIENTED ELECTRICAL STEELS: MATERIALSFOR SAVING ENERGY AND CONSERVINGTHE ENVIRONMENT -- Abstract -- Introduction -- Part 1. Effects of Additive or Contaminating Elements in theSilicon Steels -- 1.1. Additive Elements for Improving Magnetic Properties -- 1.1.1. Effects of Phosphorus [21 ,22] -- 1.1.2. Effects of Aluminum [20] -- 1.1.3. Effects of Manganese [19] -- 1.2. Trump Elements for Deteriorating Magnetic Properties -- 1.2.1. Effects of Vanadium [23] -- 1.2.2. Effects of Titanium [24] -- 1.2.3. Effects of Zirconium [25] -- Part 2. Core Manufacturing Technologies -- 2.1. Magnetic Properties Deterioration by Interlocking Lamination [26] -- 2.2. Magnetic Properties Deterioration by Compressive Elastic Stress [27] -- 2.3. Excellent Productivity Silicon Steel [29,30,32] -- Conclusion -- References -- Chapter 7INFLUENCE OF LUTING CEMENT APPLICATIONTECHNIQUE ON QUARTZ FIBER POST REGIONALBOND STRENGTHS -- Abstract -- Introduction -- Materials and Methods.
Specimen Preparation -- Bonding of Fiber Posts -- Push-out Testing -- Results -- Discussion -- Conclusion -- References -- Chapter 8MICROSTRUCTURAL INFLUENCE ON FLEXURESTRENGTH OF A CEROMER REINFORCEDBY TWO TYPES OF FIBERS(POLYETHYLENE AND GLASS) -- Abstract -- 1. Introduction -- 2. Materials and Methods -- 2.1. Microstructural Characterization -- 2.1.1. Samples Preparation -- 2.1.2. Acquisition, Treatment of the Images and Quantitative Characterization -- 2.2. Flexure Strength -- 3. Results and Discussion -- 3.1. Microstructural Characterization -- 3.2. Mechanical Behavior Characterization - Flexure Strength -- 6. Conclusion -- Acknowledgements -- References -- Chapter 9INFLUENCE ON STRENGTH PROPERTIESOF ANISOTROPY PLANES IN SLATES SAMPLESIN THE NW OF SPAIN -- Abstract -- 1. Introduction -- 2. Slates Under Study -- 3. Test Procedure -- 4. Physico-Mechanical Properties -- 5. The Influence of Anisotropy on Strength and Other Propertiesof Slates -- 6. Conclusion -- Acknowledgements -- References -- INDEX -- Blank Page.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.