ORPP logo
Image from Google Jackets

Operator Valued Hardy Spaces.

By: Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 2007Copyright date: ©2007Edition: 1st edDescription: 1 online resource (78 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470404857
Subject(s): Genre/Form: Additional physical formats: Print version:: Operator Valued Hardy SpacesDDC classification:
  • 515/.94
LOC classification:
  • QA331 -- .M475 2007eb
Online resources:
Contents:
Intro -- Contents -- Introduction -- Chapter 1. Preliminaries -- 1. The noncommutative spaces L[sup(p)](M,L[sup(2)][sub(c)](Ω)) -- 2. Operator valued Hardy spaces -- 3. Operator valued BMO spaces -- Chapter 2. The Duality between H[sup(1)] and BMO -- 1. The bounded map from L[sup(∞)](L[sup(∞)](R) ⊗ M,L[sup(2)][sub(C)]) to BMO[sub(c)](R,M) -- 2. The duality theorem of operator valued H[sup(1)] and BMO -- 3. The atomic decomposition of operator valued H[sup(1)] -- Chapter 3. The Maximal Inequality -- 1. The noncommutative Hardy-Littlewood maximal inequality -- 2. The noncommutative Lebesgue differentiation theorem and non-tangential limit of Poisson integrals -- Chapter 4. The Duality between H[sup(p)] and BMO[sup(q)],1 &lt -- p &lt -- 2 -- 1. Operator valued BMO[sup(q)](q &gt -- 2) -- 2. The duality theorem of H[sup(p)] and BM0[sup(q)](1 &lt -- p &lt -- 2) -- 3. The equivalence of H[sup(q)] and BMO[sup(q)](q &gt -- 2) -- Chapter 5. Reduction of BMO to dyadic BMO -- 1. BMO is the intersection of two dyadic BMO -- 2. The equivalence of H[sup(p)][sub(cr)] (R,M) and L[sup(p)](L[sup(∞)](R) ⊗ M)(1&lt -- p&lt -- ∞) -- Chapter 6. Interpolation -- 1. Complex interpolation -- 2. Real interpolation -- 3. Fourier multipliers -- Bibliography.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Introduction -- Chapter 1. Preliminaries -- 1. The noncommutative spaces L[sup(p)](M,L[sup(2)][sub(c)](Ω)) -- 2. Operator valued Hardy spaces -- 3. Operator valued BMO spaces -- Chapter 2. The Duality between H[sup(1)] and BMO -- 1. The bounded map from L[sup(∞)](L[sup(∞)](R) ⊗ M,L[sup(2)][sub(C)]) to BMO[sub(c)](R,M) -- 2. The duality theorem of operator valued H[sup(1)] and BMO -- 3. The atomic decomposition of operator valued H[sup(1)] -- Chapter 3. The Maximal Inequality -- 1. The noncommutative Hardy-Littlewood maximal inequality -- 2. The noncommutative Lebesgue differentiation theorem and non-tangential limit of Poisson integrals -- Chapter 4. The Duality between H[sup(p)] and BMO[sup(q)],1 &lt -- p &lt -- 2 -- 1. Operator valued BMO[sup(q)](q &gt -- 2) -- 2. The duality theorem of H[sup(p)] and BM0[sup(q)](1 &lt -- p &lt -- 2) -- 3. The equivalence of H[sup(q)] and BMO[sup(q)](q &gt -- 2) -- Chapter 5. Reduction of BMO to dyadic BMO -- 1. BMO is the intersection of two dyadic BMO -- 2. The equivalence of H[sup(p)][sub(cr)] (R,M) and L[sup(p)](L[sup(∞)](R) ⊗ M)(1&lt -- p&lt -- ∞) -- Chapter 6. Interpolation -- 1. Complex interpolation -- 2. Real interpolation -- 3. Fourier multipliers -- Bibliography.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.