Hybrid Electric Vehicles : Principles and Applications with Practical Perspectives.
Material type:
- text
- computer
- online resource
- 9781118970539
- 629.22/93
- TL221.15.M5 2018
Intro -- Title Page -- Copyright Page -- Contents -- About the Authors -- Preface To the First Edition -- PrefaceTo the Second Edition -- Series Preface -- Chapter 1 Introduction -- 1.1 Sustainable Transportation -- 1.1.1 Population, Energy, and Transportation -- 1.1.2 Environment -- 1.1.3 Economic Growth -- 1.1.4 New Fuel Economy Requirement -- 1.2 A Brief History of HEVs -- 1.3 Why EVs Emerged and Failed in the 1990s, and What We Can Learn -- 1.4 Architectures of HEVs -- 1.4.1 Series HEVs -- 1.4.2 Parallel HEVs -- 1.4.3 Series-Parallel HEVs -- 1.4.4 Complex HEVs -- 1.4.5 Diesel and other Hybrids -- 1.4.6 Other Approaches to Vehicle Hybridization -- 1.4.7 Hybridization Ratio -- 1.5 Interdisciplinary Nature of HEVs -- 1.6 State of the Art of HEVs -- 1.6.1 Toyota Prius -- 1.6.2 The Honda Civic -- 1.6.3 The Ford Escape -- 1.6.4 The Two-Mode Hybrid -- 1.7 Challenges and Key Technology of HEVs -- 1.8 The Invisible Hand-Government Support -- 1.9 Latest Development in EV and HEV, China's Surge in EV Sales -- References -- Chapter 2 Concept of Hybridization of the Automobile -- 2.1 Vehicle Basics -- 2.1.1 Constituents of a Conventional Vehicle -- 2.1.2 Vehicle and Propulsion Load -- 2.1.3 Drive Cycles and Drive Terrain -- 2.2 Basics of the EV -- 2.2.1 Why EV? -- 2.2.2 Constituents of an EV -- 2.2.3 Vehicle and Propulsion Loads -- 2.3 Basics of the HEV -- 2.3.1 Why HEV? -- 2.3.2 Constituents of an HEV -- 2.4 Basics of Plug-In Hybrid Electric Vehicle (PHEV) -- 2.4.1 Why PHEV? -- 2.4.2 Constituents of a PHEV -- 2.4.3 Comparison of HEV and PHEV -- 2.5 Basics of Fuel Cell Vehicles (FCVs) -- 2.5.1 Why FCV? -- 2.5.2 Constituents of a FCV -- 2.5.3 Some Issues Related to Fuel Cells -- Reference -- Chapter 3 HEV Fundamentals -- 3.1 Introduction -- 3.2 Vehicle Model -- 3.3 Vehicle Performance -- 3.4 EV Powertrain Component Sizing -- 3.5 Series Hybrid Vehicle.
3.6 Parallel Hybrid Vehicle -- 3.6.1 Electrically Peaking Hybrid Concept -- 3.6.2 ICE Characteristics -- 3.6.3 Gradability Requirement -- 3.6.4 Selection of Gear Ratio from ICE to Wheel -- 3.7 Wheel Slip Dynamics -- References -- Chapter 4 Advanced HEV Architectures and Dynamics of HEV Powertrain -- 4.1 Principle of Planetary Gears -- 4.2 Toyota Prius and Ford Escape Hybrid Powertrain -- 4.3 GM Two-Mode Hybrid Transmission -- 4.3.1 Operating Principle of the Two-Mode Powertrain -- 4.3.2 Mode 0: Vehicle Launch and Backup -- 4.3.3 Mode 1: Low Range -- 4.3.4 Mode 2: High Range -- 4.3.5 Mode 3: Regenerative Braking -- 4.3.6 Transition between Modes 0, 1, 2, and 3 -- 4.4 Dual-Clutch Hybrid Transmissions -- 4.4.1 Conventional DCT Technology -- 4.4.2 Gear Shift Schedule -- 4.4.3 DCT-Based Hybrid Powertrain -- 4.4.4 Operation of DCT-Based Hybrid Powertrain -- 4.4.4.1 Motor-Alone Mode -- 4.4.4.2 Combined Mode -- 4.4.4.3 Engine-Alone Mode -- 4.4.4.4 Regenerative Braking Mode -- 4.4.4.5 Power Split Mode -- 4.4.4.6 Standstill Charge Mode -- 4.4.4.7 Series Hybrid Mode -- 4.5 Hybrid Transmission Proposed by Zhang et al. -- 4.5.1 Motor-Alone Mode -- 4.5.2 Combined Power Mode -- 4.5.3 Engine-Alone Mode -- 4.5.4 Electric CVT Mode -- 4.5.5 Energy Recovery Mode -- 4.5.6 Standstill Mode -- 4.6 Renault IVT Hybrid Transmission -- 4.7 Timken Two-Mode Hybrid Transmission -- 4.7.1 Mode 0: Launch and Reverse -- 4.7.2 Mode 1: Low-Speed Operation -- 4.7.3 Mode 2: High-Speed Operation -- 4.7.4 Mode 4: Series Operating Mode -- 4.7.5 Mode Transition -- 4.8 Tsai's Hybrid Transmission -- 4.9 Hybrid Transmission with Both Speed and Torque Coupling Mechanism -- 4.10 Toyota Highlander and Lexus Hybrid, E-Four-Wheel Drive -- 4.11 CAMRY Hybrid -- 4.12 Chevy Volt Powertrain -- 4.13 Non-Ideal Gears in the Planetary System -- 4.14 Dynamics of the Transmission -- 4.15 Conclusions.
References -- Chapter 5 Plug-In Hybrid Electric Vehicles -- 5.1 Introduction to PHEVs -- 5.1.1 PHEVs and EREVs -- 5.1.2 Blended PHEVs -- 5.1.3 Why PHEV? -- 5.1.4 Electricity for PHEV Use -- 5.2 PHEV Architectures -- 5.3 Equivalent Electric Range of Blended PHEVs -- 5.4 Fuel Economy of PHEVs -- 5.4.1 Well‐to‐Wheel Efficiency -- 5.4.2 PHEV Fuel Economy -- 5.4.3 Utility Factor -- 5.5 Power Management of PHEVs -- 5.6 PHEV Design and Component Sizing -- 5.7 Component Sizing of EREVs -- 5.8 Component Sizing of Blended PHEVs -- 5.9 HEV to PHEV Conversions -- 5.9.1 Replacing the Existing Battery Pack -- 5.9.2 Adding an Extra Battery Pack -- 5.9.3 Converting Conventional Vehicles to PHEVs -- 5.10 Other Topics on PHEVs -- 5.10.1 End-of-Life Battery for Electric Power Grid Support -- 5.10.2 Cold Start Emissions Reduction in PHEVs -- 5.10.3 Cold Weather/Hot Weather Performance Enhancement in PHEVs -- 5.10.4 PHEV Maintenance -- 5.10.5 Safety of PHEVs -- 5.11 Vehicle-to-Grid Technology -- 5.11.1 PHEV Battery Charging -- 5.11.2 Impact of G2V -- 5.11.3 The Concept of V2G -- 5.11.4 Advantages of V2G -- 5.11.5 Case Studies of V2G -- 5.12 Conclusion -- References -- Chapter 6 Special Hybrid Vehicles -- 6.1 Hydraulic Hybrid Vehicles -- 6.1.1 Regenerative Braking in HHVs -- 6.2 Off-Road HEVs -- 6.2.1 Hybrid Excavators -- 6.2.2 Hybrid Excavator Design Considerations -- 6.3 Diesel HEVs -- 6.4 Electric or Hybrid Ships, Aircraft, and Locomotives -- 6.4.1 Ships -- 6.4.2 Aircraft -- 6.4.3 Locomotives -- 6.5 Other Industrial Utility Application Vehicles -- References -- Further Reading -- Chapter 7 HEV Applications for Military Vehicles -- 7.1 Why HEVs Can Be Beneficial for Military Applications -- 7.2 Ground Vehicle Applications -- 7.2.1 Architecture - Series, Parallel, Complex -- 7.2.2 Vehicles That Are of Most Benefit -- 7.3 Non-Ground-Vehicle Military Applications.
7.3.1 Electromagnetic Launchers -- 7.3.2 Hybrid-Powered Ships -- 7.3.3 Aircraft Applications -- 7.3.4 Dismounted Soldier Applications -- 7.4 Ruggedness Issues -- References -- Further Reading -- Chapter 8 Diagnostics, Prognostics, Reliability, EMC, and Other Topics Related to HEVs -- 8.1 Diagnostics and Prognostics in HEVs and EVs -- 8.1.1 Onboard Diagnostics -- 8.1.2 Prognostics Issues -- 8.2 Reliability of HEVs -- 8.2.1 Analyzing the Reliability of HEV Architectures -- 8.2.2 Reliability and Graceful Degradation -- 8.2.3 Software Reliability Issues -- 8.3 Electromagnetic Compatibility (EMC) Issues -- 8.4 Noise Vibration Harshness (NVH), Electromechanical, and Other Issues -- 8.5 End-of-Life Issues -- References -- Further Reading -- Chapter 9 Power Electronics in HEVs -- 9.1 Introduction -- 9.2 Principles of Power Electronics -- 9.3 Rectifiers Used in HEVs -- 9.3.1 Ideal Rectifier -- 9.3.2 Practical Rectifier -- 9.3.3 Single-Phase Rectifier -- 9.3.4 Voltage Ripple -- 9.4 Buck Converter Used in HEVs -- 9.4.1 Operating Principle -- 9.4.2 Nonlinear Model -- 9.5 Non-Isolated Bidirectional DC-DC Converter -- 9.5.1 Operating Principle -- 9.5.2 Maintaining Constant Torque Range and Power Capability -- 9.5.3 Reducing Current Ripple in the Battery -- 9.5.4 Regenerative Braking -- 9.6 Voltage Source Inverter -- 9.7 Current Source Inverter -- 9.8 Isolated Bidirectional DC-DC Converter -- 9.8.1 Basic Principle and Steady State Operations -- 9.8.1.1 Heavy Load Conditions -- 9.8.1.2 Light Load Condition -- 9.8.1.3 Output Voltage -- 9.8.1.4 Output Power -- 9.8.2 Voltage Ripple -- 9.9 PWM Rectifier in HEVs -- 9.9.1 Rectifier Operation of Inverter -- 9.10 EV and PHEV Battery Chargers -- 9.10.1 Forward/Flyback Converters -- 9.10.2 Half-Bridge DC-DC Converter -- 9.10.3 Full-Bridge DC-DC Converter -- 9.10.4 Power Factor Correction Stage.
9.10.4.1 Decreasing Impact on the Grid -- 9.10.4.2 Decreasing the Impact on the Switches -- 9.10.5 Bidirectional Battery Chargers -- 9.10.6 Other Charger Topologies -- 9.10.7 Contactless Charging -- 9.10.8 Wireless Charging -- 9.11 Modeling and Simulation of HEV Power Electronics -- 9.11.1 Device-Level Simulation -- 9.11.2 System-Level Model -- 9.12 Emerging Power Electronics Devices -- 9.13 Circuit Packaging -- 9.14 Thermal Management of HEV Power Electronics -- 9.15 Conclusions -- References -- 10 Electric Machines and Drives in HEVs -- 10.1 Introduction -- 10.2 Induction Motor Drives -- 10.2.1 Principle of Induction Motors -- 10.2.2 Equivalent Circuit of Induction Motor -- 10.2.3 Speed Control of Induction Machine -- 10.2.4 Variable Frequency, Variable Voltage Control of Induction Motors -- 10.2.5 Efficiency and Losses of Induction Machine -- 10.2.6 Additional Loss in Induction Motors Due to PWM Supply -- 10.2.7 Field-Oriented Control of Induction Machine -- 10.3 Permanent Magnet Motor Drives -- 10.3.1 Basic Configuration of PM Motors -- 10.3.2 Basic Principle and Operation of PM Motors -- 10.3.3 Magnetic Circuit Analysis of IPM Motors -- 10.3.3.1 Unsaturated Motor -- 10.3.3.2 Saturated Motor -- 10.3.3.3 Operation Under Load -- 10.3.3.4 Flux Concentration -- 10.3.4 Sizing of Magnets in PM Motors -- 10.3.4.1 Input Power -- 10.3.4.2 Direct-Axis Armature Reaction Factor -- 10.3.4.3 Magnetic Usage Ratio and Flux Leakage Coefficient -- 10.3.4.4 Maximum Armature Current -- 10.3.4.5 Inner Power Angle -- 10.3.5 Eddy Current Losses in the Magnets of PM Machines -- 10.4 Switched Reluctance Motors -- 10.5 Doubly Salient Permanent Magnet Machines -- 10.6 Design and Sizing of Traction Motors -- 10.6.1 Selection of A and B -- 10.6.2 Speed Rating of the Traction Motor -- 10.6.3 Determination of the Inner Power.
10.7 Thermal Analysis and Modeling of Traction Motors.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.