ORPP logo
Image from Google Jackets

Cornered Heegaard Floer Homology.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical Society SeriesPublisher: Providence : American Mathematical Society, 2019Copyright date: ©2019Edition: 1st edDescription: 1 online resource (124 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470455057
Subject(s): Genre/Form: Additional physical formats: Print version:: Cornered Heegaard Floer HomologyDDC classification:
  • 516.36
LOC classification:
  • QA665 .D684 2019
Online resources:
Contents:
Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Some abstract 2-algebra -- 2.1. Rectangular 2-algebras -- 2.2. Rectangular algebra-modules and 2-modules -- 2.3. Motility hypotheses and tensor products -- 2.4. Sequential objects and restricted tensor products -- 2.5. Module-2-modules, algebra-bimodules, and bimodule-modules -- Chapter 3. More 2-algebra: Bending and smoothing -- 3.1. The top-right bent tensor product -- 3.2. 2-modules as bent modules -- 3.3. The smoothed tensor product -- 3.4. The bottom-left bent tensor product -- 3.5. \Ainf-2-modules -- Chapter 4. Some homological algebra of 2-modules -- Chapter 5. The algebras and algebra-modules -- 5.1. The algebra associated to a matched circle -- 5.2. The algebra-modules associated to matched intervals -- 5.3. Gluing surfaces with boundary -- Chapter 6. The cornering module-2-modules -- 6.1. The \DD identity module-bimodule -- 6.2. The \DhAA- and \AhDD-cornering modules -- 6.3. The other cornering modules -- Chapter 7. The trimodules \trimod_{ } and \trimod_{ } -- 7.1. Combinatorial descriptions of the trimodules -- 7.2. Computation of \TDDD -- 7.3. Computation of \TDDA -- Chapter 8. Cornered 2-modules for cornered Heegaard diagrams -- 8.1. Cornered Heegaard diagrams -- 8.2. Definition of the cornered 2-modules -- 8.3. Tensor products of cornering module-2-modules -- 8.4. Proofs of the invariance and gluing theorems -- Chapter 9. Gradings -- 9.1. Noncommutative gradings -- 9.2. Gradings on the cornered 2-algebras, algebra-modules, and 2-modules -- 9.3. The graded pairing theorem -- Chapter 10. Practical computations -- 10.1. Induction and restriction functors -- 10.2. The multiplicity-one 2-algebra -- 10.3. An example -- Chapter 11. The nilCoxeter planar algebra -- Bibliography -- Back Cover.
Summary: Bordered Floer homology assigns invariants to 3-manifolds with boundary, such that the Heegaard Floer homology of a closed 3-manifold, split into two pieces, can be recovered as a tensor product of the bordered invariants of the pieces. The authors construct cornered Floer homology invariants of 3-manifolds with codimension-2 corners and prove that the bordered Floer homology of a 3-manifold with boundary, split into two pieces with corners, can be recovered as a tensor product of the cornered invariants of the pieces.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Some abstract 2-algebra -- 2.1. Rectangular 2-algebras -- 2.2. Rectangular algebra-modules and 2-modules -- 2.3. Motility hypotheses and tensor products -- 2.4. Sequential objects and restricted tensor products -- 2.5. Module-2-modules, algebra-bimodules, and bimodule-modules -- Chapter 3. More 2-algebra: Bending and smoothing -- 3.1. The top-right bent tensor product -- 3.2. 2-modules as bent modules -- 3.3. The smoothed tensor product -- 3.4. The bottom-left bent tensor product -- 3.5. \Ainf-2-modules -- Chapter 4. Some homological algebra of 2-modules -- Chapter 5. The algebras and algebra-modules -- 5.1. The algebra associated to a matched circle -- 5.2. The algebra-modules associated to matched intervals -- 5.3. Gluing surfaces with boundary -- Chapter 6. The cornering module-2-modules -- 6.1. The \DD identity module-bimodule -- 6.2. The \DhAA- and \AhDD-cornering modules -- 6.3. The other cornering modules -- Chapter 7. The trimodules \trimod_{ } and \trimod_{ } -- 7.1. Combinatorial descriptions of the trimodules -- 7.2. Computation of \TDDD -- 7.3. Computation of \TDDA -- Chapter 8. Cornered 2-modules for cornered Heegaard diagrams -- 8.1. Cornered Heegaard diagrams -- 8.2. Definition of the cornered 2-modules -- 8.3. Tensor products of cornering module-2-modules -- 8.4. Proofs of the invariance and gluing theorems -- Chapter 9. Gradings -- 9.1. Noncommutative gradings -- 9.2. Gradings on the cornered 2-algebras, algebra-modules, and 2-modules -- 9.3. The graded pairing theorem -- Chapter 10. Practical computations -- 10.1. Induction and restriction functors -- 10.2. The multiplicity-one 2-algebra -- 10.3. An example -- Chapter 11. The nilCoxeter planar algebra -- Bibliography -- Back Cover.

Bordered Floer homology assigns invariants to 3-manifolds with boundary, such that the Heegaard Floer homology of a closed 3-manifold, split into two pieces, can be recovered as a tensor product of the bordered invariants of the pieces. The authors construct cornered Floer homology invariants of 3-manifolds with codimension-2 corners and prove that the bordered Floer homology of a 3-manifold with boundary, split into two pieces with corners, can be recovered as a tensor product of the cornered invariants of the pieces.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.