ORPP logo
Image from Google Jackets

Advanced Functional Analysis.

By: Contributor(s): Material type: TextTextPublisher: Milton : Taylor & Francis Group, 2019Copyright date: ©2019Edition: 1st edDescription: 1 online resource (467 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780429809552
Subject(s): Genre/Form: Additional physical formats: Print version:: Advanced Functional AnalysisDDC classification:
  • 515.7
LOC classification:
  • QA320 .M2845 2019
Online resources:
Contents:
Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Authors -- Symbol Description -- 1. Fundamentals of Linear and Topological Spaces -- 1.1 Introduction -- 1.2 Partially ordered sets and Zorn's lemma -- 1.3 Important notations -- 1.4 Inequalities -- 1.5 Linear spaces, algebraic bases and dimension -- 1.6 Linear maps -- 1.7 Semimetric and metric spaces -- 1.8 Seminormed and normed spaces -- 1.9 Topological spaces -- 1.10 Net convergence -- 1.11 Subnets -- 1.12 Compact sets -- 2. Linear Topological Spaces -- 2.1 Introduction -- 2.2 Set arithmetic and convexity -- 2.3 Convex and affine sets -- 2.4 Balloons and cones -- 2.5 Quotient spaces -- 2.6 Supremum and weak topologies -- 2.7 Product topology -- 2.8 Properties of linear topological spaces -- 2.9 Closed maps -- 2.10 Baire's category theorem -- 2.11 Locally convex spaces -- 2.12 Quotient topologies -- 3. Linear Metric Spaces -- 3.1 Introduction -- 3.2 Paranormed spaces -- 3.3 Properties of paranormed and seminormed spaces -- 3.4 Schauder basis -- 3.5 Open mapping theorem -- 3.6 The closed graph theorem -- 3.7 Uniform boundedness principle -- 3.8 Properties of seminorms -- 3.9 The Minkowski functional -- 3.10 Local convexity -- 3.11 Metrizability -- 4. Banach Spaces -- 4.1 Introduction -- 4.2 Some basic properties -- 4.3 Examples -- 4.4 Bounded linear operators -- 4.5 The Hahn-Banach theorem -- 4.6 Important theorems -- 4.7 Representation theorems -- 4.8 Reflexivity -- 4.9 Adjoint operators -- 4.10 Quotient spaces -- 4.11 Cauchy nets, summable families -- 4.12 Equivalent norms -- 4.13 Compactness and the Riesz lemma -- 4.14 Compact operators -- 4.15 Operators with closed range -- 5. Hilbert Spaces -- 5.1 Introduction -- 5.2 Inner product spaces -- 5.3 Elementary properties and Hilbert spaces -- 5.4 Examples -- 5.5 Theorem P. Jordan-J. von Neumann -- 5.6 Orthogonality.
5.7 Theorem of the element of minimal norm -- 5.8 Theorem on the orthogonal decomposition -- 5.9 Riesz representation theorem -- 5.10 Bessel's inequality, Fourier coefficients -- 5.11 Parseval's equality, Hilbert basis -- 5.12 Gram-Schmidt orthogonalization method -- 5.13 Hilbert adjoint operators -- 5.14 Hermitian, normal, positive and unitary operators -- 5.15 Projectors and orthogonal projectors -- 5.16 On the norm of idempotent operators -- 6. Banach Algebras -- 6.1 Introduction -- 6.2 The concept of a Banach algebra -- 6.3 Examples -- 6.4 Invertibility -- 6.5 Spectrum and resolvent -- 6.6 Spectral radius -- 6.7 Topological divisor of zero -- 6.8 Spectrum and subalgebras -- 6.9 One Hochwald-Morell and two Harte theorems -- 6.10 B(X) as a Banach algebra -- 6.11 The spectrum of self-adjoint and normal operators -- 6.12 Spectrum of compact operators -- 6.13 C*-algebras -- 6.14 Inverting the difference of projections -- 7. Measures of Noncompactness -- 7.1 Introduction -- 7.2 Preliminary results -- 7.3 Fixed point theorems -- 7.4 Hausdorff distance -- 7.5 The axioms of measures of noncompactness -- 7.6 The Kuratowski measure of noncompactness -- 7.7 The Hausdorff measure of noncompactness -- 7.8 The inner Hausdorff and the separation measures of noncompactness -- 7.9 The Golden stein-Goh'berg-Markus theorem -- 7.10 The Darbo-Sadovskiĭ theorem of operators -- 7.11 Measures of noncompactness of operators -- 7.12 Ascent and descent of operators -- 7.13 Fredholm theorems for operators with || . ||x &lt -- 1 -- 8. Fredholm Theory -- 8.1 Introduction -- 8.2 Preliminary results -- 8.3 Generalized kernel and generalized range of operators -- 8.4 Fredholm and semi-Fredholm operators -- 8.5 The index theorem -- 8.6 Atkinson's theorem -- 8.7 Yood results for Φ+- and Φ+- operators -- 8.8 Φ, Φi and Φr operators and Calkin algebras -- 8.9 Φ+ and Φ_ are open sets.
8.10 The punctured neighborhood theorem -- 8.11 The Kato decomposition theorem -- 8.12 Browder and semi-Browder operators -- 8.13 Essential spectra -- 8.14 Essential type subsets of the spectrum -- 9. Sequence Spaces -- 9.1 Introduction -- 9.2 FK and BK spaces -- 9.3 Matrix transformations into ℓ∞, c, c0, and ℓ1 -- 9.4 Dual spaces -- 9.5 Relations between di erent kinds of duals -- 9.6 Properties of the transposes of matrices -- 9.7 Matrix transformations between the classical sequence spaces -- 9.8 Compact matrix operators -- 9.9 The class K(c) -- 9.10 Compact matrix operators between the classical sequence spaces -- 10. Fixed Point Theory -- 10.1 Introduction -- 10.2 Banach contraction principle -- 10.3 Edelstein's results -- 10.4 Rakotch's results -- 10.5 Boyd and Wong's nonlinear contraction -- 10.6 Theorem of Meir-Keeler -- 10.7 Theorems by Kannan, Chatterjee, and Zamfirescu -- 10.8 Cirič's generalized contraction -- 10.9 The Reich and Hardy{Rogers theorems -- 10.10 Cirič's quasi-contraction -- 10.11 Caristi's theorem -- 10.12 A theorem by Bollenbacher and Hicks -- 10.13 Mann iteration -- 10.14 Continuous functions on compact real intervals -- Bibliography -- Russian Bibliography -- Index.
Summary: This book can be used as a textbook in advanced functional analysis, which is a modern and important field in mathematics, for graduate and postgraduate courses and seminars at universities. At the same time, it enables the interested readers to do their own research.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Authors -- Symbol Description -- 1. Fundamentals of Linear and Topological Spaces -- 1.1 Introduction -- 1.2 Partially ordered sets and Zorn's lemma -- 1.3 Important notations -- 1.4 Inequalities -- 1.5 Linear spaces, algebraic bases and dimension -- 1.6 Linear maps -- 1.7 Semimetric and metric spaces -- 1.8 Seminormed and normed spaces -- 1.9 Topological spaces -- 1.10 Net convergence -- 1.11 Subnets -- 1.12 Compact sets -- 2. Linear Topological Spaces -- 2.1 Introduction -- 2.2 Set arithmetic and convexity -- 2.3 Convex and affine sets -- 2.4 Balloons and cones -- 2.5 Quotient spaces -- 2.6 Supremum and weak topologies -- 2.7 Product topology -- 2.8 Properties of linear topological spaces -- 2.9 Closed maps -- 2.10 Baire's category theorem -- 2.11 Locally convex spaces -- 2.12 Quotient topologies -- 3. Linear Metric Spaces -- 3.1 Introduction -- 3.2 Paranormed spaces -- 3.3 Properties of paranormed and seminormed spaces -- 3.4 Schauder basis -- 3.5 Open mapping theorem -- 3.6 The closed graph theorem -- 3.7 Uniform boundedness principle -- 3.8 Properties of seminorms -- 3.9 The Minkowski functional -- 3.10 Local convexity -- 3.11 Metrizability -- 4. Banach Spaces -- 4.1 Introduction -- 4.2 Some basic properties -- 4.3 Examples -- 4.4 Bounded linear operators -- 4.5 The Hahn-Banach theorem -- 4.6 Important theorems -- 4.7 Representation theorems -- 4.8 Reflexivity -- 4.9 Adjoint operators -- 4.10 Quotient spaces -- 4.11 Cauchy nets, summable families -- 4.12 Equivalent norms -- 4.13 Compactness and the Riesz lemma -- 4.14 Compact operators -- 4.15 Operators with closed range -- 5. Hilbert Spaces -- 5.1 Introduction -- 5.2 Inner product spaces -- 5.3 Elementary properties and Hilbert spaces -- 5.4 Examples -- 5.5 Theorem P. Jordan-J. von Neumann -- 5.6 Orthogonality.

5.7 Theorem of the element of minimal norm -- 5.8 Theorem on the orthogonal decomposition -- 5.9 Riesz representation theorem -- 5.10 Bessel's inequality, Fourier coefficients -- 5.11 Parseval's equality, Hilbert basis -- 5.12 Gram-Schmidt orthogonalization method -- 5.13 Hilbert adjoint operators -- 5.14 Hermitian, normal, positive and unitary operators -- 5.15 Projectors and orthogonal projectors -- 5.16 On the norm of idempotent operators -- 6. Banach Algebras -- 6.1 Introduction -- 6.2 The concept of a Banach algebra -- 6.3 Examples -- 6.4 Invertibility -- 6.5 Spectrum and resolvent -- 6.6 Spectral radius -- 6.7 Topological divisor of zero -- 6.8 Spectrum and subalgebras -- 6.9 One Hochwald-Morell and two Harte theorems -- 6.10 B(X) as a Banach algebra -- 6.11 The spectrum of self-adjoint and normal operators -- 6.12 Spectrum of compact operators -- 6.13 C*-algebras -- 6.14 Inverting the difference of projections -- 7. Measures of Noncompactness -- 7.1 Introduction -- 7.2 Preliminary results -- 7.3 Fixed point theorems -- 7.4 Hausdorff distance -- 7.5 The axioms of measures of noncompactness -- 7.6 The Kuratowski measure of noncompactness -- 7.7 The Hausdorff measure of noncompactness -- 7.8 The inner Hausdorff and the separation measures of noncompactness -- 7.9 The Golden stein-Goh'berg-Markus theorem -- 7.10 The Darbo-Sadovskiĭ theorem of operators -- 7.11 Measures of noncompactness of operators -- 7.12 Ascent and descent of operators -- 7.13 Fredholm theorems for operators with || . ||x &lt -- 1 -- 8. Fredholm Theory -- 8.1 Introduction -- 8.2 Preliminary results -- 8.3 Generalized kernel and generalized range of operators -- 8.4 Fredholm and semi-Fredholm operators -- 8.5 The index theorem -- 8.6 Atkinson's theorem -- 8.7 Yood results for Φ+- and Φ+- operators -- 8.8 Φ, Φi and Φr operators and Calkin algebras -- 8.9 Φ+ and Φ_ are open sets.

8.10 The punctured neighborhood theorem -- 8.11 The Kato decomposition theorem -- 8.12 Browder and semi-Browder operators -- 8.13 Essential spectra -- 8.14 Essential type subsets of the spectrum -- 9. Sequence Spaces -- 9.1 Introduction -- 9.2 FK and BK spaces -- 9.3 Matrix transformations into ℓ∞, c, c0, and ℓ1 -- 9.4 Dual spaces -- 9.5 Relations between di erent kinds of duals -- 9.6 Properties of the transposes of matrices -- 9.7 Matrix transformations between the classical sequence spaces -- 9.8 Compact matrix operators -- 9.9 The class K(c) -- 9.10 Compact matrix operators between the classical sequence spaces -- 10. Fixed Point Theory -- 10.1 Introduction -- 10.2 Banach contraction principle -- 10.3 Edelstein's results -- 10.4 Rakotch's results -- 10.5 Boyd and Wong's nonlinear contraction -- 10.6 Theorem of Meir-Keeler -- 10.7 Theorems by Kannan, Chatterjee, and Zamfirescu -- 10.8 Cirič's generalized contraction -- 10.9 The Reich and Hardy{Rogers theorems -- 10.10 Cirič's quasi-contraction -- 10.11 Caristi's theorem -- 10.12 A theorem by Bollenbacher and Hicks -- 10.13 Mann iteration -- 10.14 Continuous functions on compact real intervals -- Bibliography -- Russian Bibliography -- Index.

This book can be used as a textbook in advanced functional analysis, which is a modern and important field in mathematics, for graduate and postgraduate courses and seminars at universities. At the same time, it enables the interested readers to do their own research.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.