A Probabilistic Theory of Pattern Recognition.
Material type:
- text
- computer
- online resource
- 9781461207115
- 003/.52/015192
- QA273.A1-274.9
A Probabilistic Theory of Pattern Recognition -- Editor's page -- A Probabilistic Theory of Pattern Recognition -- Copyright -- Preface -- Contents -- 1 Introduction -- 2 The Bayes Error -- 3 Inequalities and Alternate Distance Measures -- 4 Linear Discrimination -- 5 Nearest Neighbor Rules -- 6 Consistency -- 7 Slow Rates of Convergence -- 8 Error Estimation -- 9 The Regular Histogram Rule -- 10 Kernel Rules -- 11 Consistency of the k-Nearest Neighbor Rule -- 12 Vapnik -Chervonenkis Theory -- 13 Combinatorial Aspects of Vapnik -Chervonenkis Theory -- 14 Lower Bounds for Empirical Classifier Selection -- 15 The Maximum Likelihood Principle -- 16 Parametric Classification -- 17 Generalized Linear Discrimination -- 18 Complexity Regularization -- 19 Condensed and Edited Nearest Neighbor Rules -- 20 Tree Classifiers -- 21 Data- Dependent Partitioning -- 22 Splitting the Data -- 23 The Resubstitution Estimate -- 24 Deleted Estimates of the Error Probability -- 25 Automatic Kernel Rules -- 26 Automatic Nearest Neighbor Rules -- 27 Hypercubes and Discrete Spaces -- 28 Epsilon Entropy and Totally Bounded Sets -- 29 Uniform Laws of Large Numbers -- 30 Neural Networks -- 31 Other Error Estimates -- 32 Feature Extraction -- Appendix -- Notation -- References -- Author Index -- Subject Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.