ORPP logo
Image from Google Jackets

On (K-Z-n) and K-Fq(t)-(t2).

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 1985Copyright date: ©1985Edition: 1st edDescription: 1 online resource (210 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470407421
Subject(s): Genre/Form: Additional physical formats: Print version:: On (K-Z-n) and K-Fq(t)-(t2)DDC classification:
  • 512/.55
LOC classification:
  • QA612.33 -- .A373 1985eb
Online resources:
Contents:
Intro -- Table of Contents -- On K[sub(3)](Z/p[sup(n)]) and K[sub(4)](Z/p[sup(n)]) -- Introduction -- I.1: Some results from algebraic topology -- I.2: Some explicit differentials -- I.3: Proofs -- I.4: Filtration of H* (M[sub(n)]Z/p[sup(2)] -- Z) -- II.1: Results of Evens-Friedlander, Lluis &amp -- Snaith -- II.2: K[sub(3)](Z/p[sup(2))] for primes p &gt -- 3 -- II.3: K[sub(3)](Z/4) = Z/12 -- II.4: K[sub(3)](Z/9) = Z/8 ⊕ Z/9 -- Appendix to II.1 -- III.1: Mod p cohomology of ker(SL[sub(n)]Z/p[sup(3)] → SL[sub(n)]Z/p) -- III.2: Mod p cohomology of ker(SL[sub(n)]Z/p[sup(k)] → SL[sub(n)]Z/p), k &gt -- 3 -- 1st Appendix to III.1 (case p = 2) -- 2nd Appendix to III.1 (commutator relations, and the SL[sub(n)]Z/p - action -- IV.l: Integral cohomology of ker(SL[sub(n)]Z/p[sup(k)] → SL[sub(n)] Z/p) -- IV.2: SL[sub(n)]Z/p - invariants in H4[sup(4)](- -- Z) of this kernel -- Appendix to IV. 1 -- Appendix to IV. 2 -- V.1: K[sub(3)](Z/p[sup(k)]), K[sub(4)](Z/p[sup(k)]) for k an odd prime -- V.2: K[sub(3)](Z/2[sup(k)]) -- VI.1: Maps induced by reduction SLZ → SLZ/p[sup(k)] -- Notation -- Bibliography -- On K[sub(3)(IF[sub(pl)][t]/(t[sup(2)]) and K[sub(3)](Z/q),p an odd prime -- 1: Introduction -- 2: Proofs of 1.1/1.2 -- 3: Group cohomology calculations -- Bibliography -- On K[sub(3)]of dual numbers -- Introduction - statement of results -- 1: Computations of some k*-invariants -- 2: Computation of H[sup(i)](T[sub(n)]k -- H[sup(1)](M[sub(n)]k)) for i = 0, 1 and 2 -- 3: R[sub(n)] - invariants in H[sup(2)](M[sub(n)]k) -- 4: Estimates of H[sup(1)](T[sub(n)]k -- H[sup(2)](M[sub(n)]k)) -- 5: Vanishing of H[sup(1)](GL[sub(n)]k -- H[sup(2)](M[sub(n)]k)) -- 6: GL[sub(n) - invariants of H[sup(3)](M[sub(n)]k) -- 7: H[sub(*)](GLk -- H[sub(*)](M∞k)) as a Hopf algebra -- 8: Explicit generators for H[sub(2)](SLk -- H[sub(1)](M[sub(n)]k)).
9: Determination of K[sub(3)](IF [sub(2m)[ε] -- 10: On K[sub(3)](Z/4) and K[sub(3)] of Witt vectors, W[sub(2)](IF [sub(2m)] -- 11:Some classes in H[sub(3)](SLK -- H[sub(1)](MεK)) and their d[sub(2)]…differential -- 12: List of notations and formulae for group actions -- Appendix: Homological Stability of the Steinberg Group over the integers -- Bibliography.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Table of Contents -- On K[sub(3)](Z/p[sup(n)]) and K[sub(4)](Z/p[sup(n)]) -- Introduction -- I.1: Some results from algebraic topology -- I.2: Some explicit differentials -- I.3: Proofs -- I.4: Filtration of H* (M[sub(n)]Z/p[sup(2)] -- Z) -- II.1: Results of Evens-Friedlander, Lluis &amp -- Snaith -- II.2: K[sub(3)](Z/p[sup(2))] for primes p &gt -- 3 -- II.3: K[sub(3)](Z/4) = Z/12 -- II.4: K[sub(3)](Z/9) = Z/8 ⊕ Z/9 -- Appendix to II.1 -- III.1: Mod p cohomology of ker(SL[sub(n)]Z/p[sup(3)] → SL[sub(n)]Z/p) -- III.2: Mod p cohomology of ker(SL[sub(n)]Z/p[sup(k)] → SL[sub(n)]Z/p), k &gt -- 3 -- 1st Appendix to III.1 (case p = 2) -- 2nd Appendix to III.1 (commutator relations, and the SL[sub(n)]Z/p - action -- IV.l: Integral cohomology of ker(SL[sub(n)]Z/p[sup(k)] → SL[sub(n)] Z/p) -- IV.2: SL[sub(n)]Z/p - invariants in H4[sup(4)](- -- Z) of this kernel -- Appendix to IV. 1 -- Appendix to IV. 2 -- V.1: K[sub(3)](Z/p[sup(k)]), K[sub(4)](Z/p[sup(k)]) for k an odd prime -- V.2: K[sub(3)](Z/2[sup(k)]) -- VI.1: Maps induced by reduction SLZ → SLZ/p[sup(k)] -- Notation -- Bibliography -- On K[sub(3)(IF[sub(pl)][t]/(t[sup(2)]) and K[sub(3)](Z/q),p an odd prime -- 1: Introduction -- 2: Proofs of 1.1/1.2 -- 3: Group cohomology calculations -- Bibliography -- On K[sub(3)]of dual numbers -- Introduction - statement of results -- 1: Computations of some k*-invariants -- 2: Computation of H[sup(i)](T[sub(n)]k -- H[sup(1)](M[sub(n)]k)) for i = 0, 1 and 2 -- 3: R[sub(n)] - invariants in H[sup(2)](M[sub(n)]k) -- 4: Estimates of H[sup(1)](T[sub(n)]k -- H[sup(2)](M[sub(n)]k)) -- 5: Vanishing of H[sup(1)](GL[sub(n)]k -- H[sup(2)](M[sub(n)]k)) -- 6: GL[sub(n) - invariants of H[sup(3)](M[sub(n)]k) -- 7: H[sub(*)](GLk -- H[sub(*)](M∞k)) as a Hopf algebra -- 8: Explicit generators for H[sub(2)](SLk -- H[sub(1)](M[sub(n)]k)).

9: Determination of K[sub(3)](IF [sub(2m)[ε] -- 10: On K[sub(3)](Z/4) and K[sub(3)] of Witt vectors, W[sub(2)](IF [sub(2m)] -- 11:Some classes in H[sub(3)](SLK -- H[sub(1)](MεK)) and their d[sub(2)]…differential -- 12: List of notations and formulae for group actions -- Appendix: Homological Stability of the Steinberg Group over the integers -- Bibliography.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.