ORPP logo
Image from Google Jackets

Mesenchymal Stem Cells and Craniofacial Regeneration.

By: Contributor(s): Material type: TextTextPublisher: Oak Park : Bentham Science Publishers, 2016Copyright date: ©2016Edition: 1st edDescription: 1 online resource (408 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781681083155
Subject(s): Genre/Form: Additional physical formats: Print version:: Mesenchymal Stem Cells and Craniofacial RegenerationDDC classification:
  • 616.02773999999999
LOC classification:
  • QH588.S83.M474 2016
Online resources:
Contents:
Intro -- CONTENTS -- PREFACE -- List of Contributors -- Fundamental Concepts and Features of Mesenchymal Stem Cells: Proliferation, Differentiation, Migration and Immunomodulatory Characteristics -- 1. INTRODUCTION -- 1.1. Overview -- 1.2. History -- 1.3. Definition -- 2. THE IDENTIFICATION OF MSCS: BIOMARKERS, MORPHOLOGY -- 3. THE MAIN SOURCE OF MSCS: LOCATION AND ISOLATION -- 3.1. Genetic Phenotypes of MSCs -- 3.2. Procedures for MSC Isolation -- 4. THE PROLIFERATION OF MSCS: REGULATORY FACTORS INVOLVED IN THEIR MAINTENANCE, GROWTH AND SURVIVAL -- 5. THE FACTORS DETERMINING OR REGULATING MSC MIGRATION -- 5.1. Homing of Mesenchymal Stem Cells -- 5.2. Growth Factors Influence the Ability of MSCs to Migrate -- 5.2.1. PDGF -- 5.2.2. IGF -- 5.2.3. BMP-2, BMP-4, BMP-7, TGF-β1, TGF-β3 -- 5.2.4. EGF, HB-EGF, TGFa -- 5.2.5. FGF-2 -- 5.2.6. HGF -- 5.2.7. VEGF-A -- 5.3. Chemotactic Factors Influence the Ability of MSCs to Migrate -- 5.3.1. SDF-1 -- 5.3.2. MCP-1, MIP-1a, IL-8 -- 5.3.3. RANTES, MDC -- 5.3.4. Fractalkine -- 5.3.5. SLC, TARC -- 5.4. Other Chemoattractants -- 5.4.1. LPA, S1P -- 5.4.2. HMGB-1 -- 5.4.3. TNF-a -- 5.4.4. Ligands for Toll-Like Receptors -- 5.5. Signaling Pathways Influence the Ability of MSCs to Migrate -- 5.5.1. Mitogen-Activated Protein Kinase Pathway (MAPK) -- 5.5.2. PI-3k/AKT (Phosphatidylinositol-3-Kinase) -- 5.5.3. Jak/STAT Signaling Pathway -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Three-dimensional Printing in Dentistry: An Advanced Technology for Craniofacial Regeneration -- 2.1. INTRODUCTION -- 2.2. THE HISTORY OF 3DP -- 2.3. CATEGORY OF 3DP TECHNOLOGY -- 2.3.1. Stereolithography (SLA) -- 2.3.2. Fused Deposition Modeling (FDM) -- 2.3.3. Selective Laser Sintering (SLS) -- 2.3.4. Inkjet Printing -- 2.3.5. Laminated Object Manufacturing (LOM) -- 2.3.6. Polyjet Printing.
2.4. COMPARISON OF 3DP AND SUBTRACTIVE MANUFACTURING TECHNIQUE -- 2.5. CURRENT APPLICATION OF 3DP IN DENTISTRY -- 2.5.1. 3DP In Clinical Dentistry -- 2.5.1.1. Endodontics -- 2.5.1.2. Oral Surgery -- 2.5.1.3. Prosthodontics -- 2.5.1.4. Periodontics -- 2.5.1.5. Orthodontics -- 2.5.1.6. Implant -- 2.5.2. 3DP in Bioengineering Research in Dentistry -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Induced Pluripotent Stem Cells: Proliferation, Migration, MicroRNA, Signaling Molecules -- INTRODUCTION -- 2. IPS CELLS: METHODS OF ACQUISITION, PROMOTING GROWTH AND INCREASING INDUCED EFFICIENCY -- 2.1. Selection of Proper Recipient Cells -- 2.2. Alternative Vector Systems -- 2.3. Induction Genes -- 2.4. Acquisition of iPS Cells -- 2.5. Culture of Recipient and Induced Cells -- 2.6. Increased Induced Efficiency -- 3. IPS CELLS: METHODS FOR IDENTITY AND SAFETY FOR REGENERATIVE MEDICINE -- 3.1. Cellular Biological Properties -- 3.2. Pluripotency -- 3.3. The Restrictions and Safety Issues for Regenerative Medicine -- 4. IPS CELLS: METHODS OF INDUCTION TOWARD DIFFERENT CELL TYPES, FACTORS INFLUENCING THE POTENTIAL OF DIFFERENTIATION, AND MECHANISMS DETERMINING THE FATE OF IPS CELL SAFTER INDUCTION -- 5. APPLICATION OF INDUCED IPS CELLS IN TISSUE ENGINEERING: CELL SOURCE, UNDERSTANDING OF CELL ULARPLURIPOTENCY AND DIFFERENTIATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Craniofacial Defects and their Regeneration: Destruction and Regeneration of the Periodontium, Craniofacial Tumors, Trauma, and Congenital Defects -- 4.1. INTRODUCTION -- 4.2. CRANIOFACIAL DEFECTS: PERIODONTIUM, CRANIOFACIAL TUMORS, TRAUMA, AND CONGENITAL DEFECTS -- 4.2.1. Periodontium Defects -- 4.2.2. Craniofacial Tumors.
4.2.2.1. Soft Tissue Defects (Lingual Defect, Penetrating Defect of Cheek, Palatal Defect, Tongue and Lip Defect, Parotid Gland and Duct Defect, Facial Nerve Defect) -- 4.2.2.2. Maxillofacial Combined Resection (Soft Tissue and Jaw Bone Defects) -- 4.2.3. Craniofacial Trauma -- 4.2.3.1. Soft Tissue Injuries -- 4.2.3.2. Fractures of the Jaws (Mandible and Maxilla) -- 4.2.3.3. Other Maxillofacial Fractures -- 4.2.4. Congenital Disease -- 4.2.4.1. Classification of Cleft Lip and Palate -- 4.2.4.2. Craniofacial Dysplasia -- 4.2.5. Discussion -- 4.2.6. Conclusions -- 4.3. CURRENT TECHNIQUES AND LIMITATIONS OF THERAPY FOR CRANIOFACIAL DEFECTS: COMPOSITE MATERIALS AND SELF-TRANSPLANTATION -- 4.3.1. Autologous Tissue Transplants -- 4.3.1.1. Characteristics of Autogenous Bone Grafts -- 4.3.1.2. Characteristics of Free Flaps -- 4.3.1.3. Flap Classification (Local Flaps, Pedicled Flaps, Vascularized Flaps, and Microvascular Free Tissue Transfer) -- 4.3.2. Use of Composite Materials for Craniofacial Defects -- 4.3.2.1. Features of HA -- 4.3.2.2. Types and Characteristics of Different Implants -- 4.4. IN VITRO STUDIES OF CRANIOFACIAL REGENERATION -- 4.4.1. Cell Source -- 4.4.1.1. ESCs -- 4.4.1.2. iPSCs -- 4.4.1.3. Adult Stem Cells -- 4.4.2. Tissue Regeneration -- 4.4.2.1. Bone Regeneration -- 4.4.2.2. Cartilage Tissue Regeneration -- 4.4.2.3. Oral Mucosa Regeneration -- 4.4.2.4. Fat Tissue Regeneration -- 4.4.3. Compatibility of the Regeneration Material -- 4.4.3.1. Evolution of Current Concepts of Biocompatibility -- 4.4.3.2. Growth Factors and Biologicals -- 4.5. IN VIVO STUDIES OF CRANIOFACIAL REGENERATION -- 4.5.1. Animal Models -- 4.5.1.1. Bone Defect Models -- 4.5.1.2. TMJ Defect Model -- 4.5.1.3. Cleft Lip and Palate Model -- 4.5.1.4. Facial Nerve Injury and Regeneration Model -- 4.5.2. Cell Source -- 4.5.2.1. BMSCs -- 4.5.2.2. ASCs -- 4.5.2.3. UCMSCs.
4.5.2.4. DPSCs -- 4.5.3. Scaffolds -- 4.5.3.1. Classification of Scaffold Materials -- 4.5.3.2. Three-Dimensional Structure -- 4.5.4. Growth Factors -- 4.5.4.1. BMP-2 -- 4.5.4.2. bFGF -- 4.5.4.3. TGF-β1 -- 4.5.4.4. VEGF -- 4.5.4.5. PRP -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Cell Sheets Engineering And Transplantation in MSCs Regeneration -- 1. INTRODUCTION -- 2. FACTORS INFLUENCE THE TRANSPLANTING ABILITY OF MSCS IN CELL SHEETS -- 2.1. Cell Source and Donor-Specific Factors -- 2.2. Substrate Characteristics and Soluble Factors -- 2.3. 3D-Culture and Pre-Vascularization -- 2.4. Immune Responses to Transplanted Cell Sheet -- 2.5. Combination With Scaffold Materials -- 3. METHODS FOR FABRICATION OF CELL SHEETS -- 3.1. Fabricate Cell Sheet Using Temperature-Responsive System -- 3.1.1. Electron Beam Lithographic (EBL) System -- 3.1.2. Plasma Treated System -- 3.1.3. Ultrathin Responsive System -- 3.1.4. Cell Adhesion Protein Coated Thermoresponsive Surfaces System -- 3.1.5. Spin-Coated System -- 3.1.6. Initiated Chemical Vapor Deposition (iCVD) System -- 3.2. Electroactive Responsive System -- 3.2.1. Electrochemical Self-Assembled Monolayer Gold Surface -- 3.2.2. Polyelectrolyte Surface -- 3.2.3. Sulfenyl-Gold Surface -- 3.2.4. Electrochemical Modified Micro-Patterning Surface -- 3.3. Light Responsive Cell Sheets Technology -- 3.3.1. Oxide Treated Surface Method -- 3.3.2. Light Sensitive Molecule/Material Coatings Method -- 3.3.3. Light Sensitive Molecular Combined With Protein Coatings Method -- 3.3.4. Nanoengineered Gold Coating Surface -- 3.3.5. PMB-PL Surface -- 3.4. PH Responsive Material Coating Method -- 3.4.1. Indium Tin Oxide Surface -- 3.4.2. Chitosan Surfaces -- 3.5. Magnetite Nanoparticles and Magnetic Force Method -- 3.6. Others -- 3.6.1. Varies in Culture Medium.
3.6.2. Automatic Fabrication of Cell Sheets Using Manipulator Technique -- 3.7. The Future and Development of The Cell Sheet Technologies -- 4. ANIMAL MODELS AND CLINICAL TRIALS OF CELLS SHEETS APPLICATION IN REGENERATION MEDICINE -- 4.1. Introduction -- 4.2. Animal Models -- 4.2.1. Corneal Epithelial -- 4.2.2. Retinal Pigment Epithelium (RPE) -- 4.2.3. Middle Ear Mucosal -- 4.2.4. Periodontal Tissue -- 4.2.5. Tooth -- 4.2.6. Calvarial Defect -- 4.2.7. Jaw Defect -- 4.2.8. Esophageal Mucosa -- 4.2.9. Tracheal Replacement -- 4.2.10. Thyroid Gland -- 4.2.11. Articular Cartilage -- 4.2.12. Lung Surface (Sealing of Lung Air Leak) -- 4.2.13. Myocardium -- 4.2.14. Hepatic Tissue -- 4.2.15. Pancreatic Islets -- 4.2.16. Renal Tissue -- 4.2.17. Urothelial Tissue -- 4.3. Clinical Trails -- 4.3.1. Corneal Reconstruction -- 4.3.2. Oral Mucosa -- 4.3.3. Esophageal Mucosa -- 4.3.4. Myocardium -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- New Methods of Scaffold Fabrication: Cell-instructive Scaffolds, Structural Scaffolds, Scaffolds Fabricated from Smart Materials Able to Respond Sensitively to Environmental Cues -- 1. INTRODUCTION -- 2. CELL-INSTRUCTIVE SCAFFOLDS -- 2.1. Synthesis and Fabrication of Cell-instructive Scaffolds -- 2.1.1. Spinning -- 2.1.2. Self-assembly -- 2.1.3. Thermally Induced Phase Separation (TIPS) -- 2.1.4. Printing -- 2.1.5. Ultraviolet (UV) Photolithography -- 2.2. Related Factors of Cell-instructive Scaffolds for Cell Behavior -- 2.2.1. Scaffold Mechanics -- 2.2.2. Scaffold Composition -- 2.2.3. Scaffold Topography -- 2.3. Methods for the Loading of Bioactive Molecules -- 2.3.1. Adsorption -- 2.3.2. Controlled-release Particles -- 2.3.3. Stimulus-based Delivery -- 3. STRUCTURAL SCAFFOLDS IN TISSUE ENGINEERING -- 3.1. Features of Different Tissue Matrices -- 3.1.1. Bone Matrix -- 3.1.2. Cartilage Matrix -- 3.1.3. Skin Matrix.
3.1.4. Scaffolds in Tooth Tissue Engineering.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- CONTENTS -- PREFACE -- List of Contributors -- Fundamental Concepts and Features of Mesenchymal Stem Cells: Proliferation, Differentiation, Migration and Immunomodulatory Characteristics -- 1. INTRODUCTION -- 1.1. Overview -- 1.2. History -- 1.3. Definition -- 2. THE IDENTIFICATION OF MSCS: BIOMARKERS, MORPHOLOGY -- 3. THE MAIN SOURCE OF MSCS: LOCATION AND ISOLATION -- 3.1. Genetic Phenotypes of MSCs -- 3.2. Procedures for MSC Isolation -- 4. THE PROLIFERATION OF MSCS: REGULATORY FACTORS INVOLVED IN THEIR MAINTENANCE, GROWTH AND SURVIVAL -- 5. THE FACTORS DETERMINING OR REGULATING MSC MIGRATION -- 5.1. Homing of Mesenchymal Stem Cells -- 5.2. Growth Factors Influence the Ability of MSCs to Migrate -- 5.2.1. PDGF -- 5.2.2. IGF -- 5.2.3. BMP-2, BMP-4, BMP-7, TGF-β1, TGF-β3 -- 5.2.4. EGF, HB-EGF, TGFa -- 5.2.5. FGF-2 -- 5.2.6. HGF -- 5.2.7. VEGF-A -- 5.3. Chemotactic Factors Influence the Ability of MSCs to Migrate -- 5.3.1. SDF-1 -- 5.3.2. MCP-1, MIP-1a, IL-8 -- 5.3.3. RANTES, MDC -- 5.3.4. Fractalkine -- 5.3.5. SLC, TARC -- 5.4. Other Chemoattractants -- 5.4.1. LPA, S1P -- 5.4.2. HMGB-1 -- 5.4.3. TNF-a -- 5.4.4. Ligands for Toll-Like Receptors -- 5.5. Signaling Pathways Influence the Ability of MSCs to Migrate -- 5.5.1. Mitogen-Activated Protein Kinase Pathway (MAPK) -- 5.5.2. PI-3k/AKT (Phosphatidylinositol-3-Kinase) -- 5.5.3. Jak/STAT Signaling Pathway -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Three-dimensional Printing in Dentistry: An Advanced Technology for Craniofacial Regeneration -- 2.1. INTRODUCTION -- 2.2. THE HISTORY OF 3DP -- 2.3. CATEGORY OF 3DP TECHNOLOGY -- 2.3.1. Stereolithography (SLA) -- 2.3.2. Fused Deposition Modeling (FDM) -- 2.3.3. Selective Laser Sintering (SLS) -- 2.3.4. Inkjet Printing -- 2.3.5. Laminated Object Manufacturing (LOM) -- 2.3.6. Polyjet Printing.

2.4. COMPARISON OF 3DP AND SUBTRACTIVE MANUFACTURING TECHNIQUE -- 2.5. CURRENT APPLICATION OF 3DP IN DENTISTRY -- 2.5.1. 3DP In Clinical Dentistry -- 2.5.1.1. Endodontics -- 2.5.1.2. Oral Surgery -- 2.5.1.3. Prosthodontics -- 2.5.1.4. Periodontics -- 2.5.1.5. Orthodontics -- 2.5.1.6. Implant -- 2.5.2. 3DP in Bioengineering Research in Dentistry -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Induced Pluripotent Stem Cells: Proliferation, Migration, MicroRNA, Signaling Molecules -- INTRODUCTION -- 2. IPS CELLS: METHODS OF ACQUISITION, PROMOTING GROWTH AND INCREASING INDUCED EFFICIENCY -- 2.1. Selection of Proper Recipient Cells -- 2.2. Alternative Vector Systems -- 2.3. Induction Genes -- 2.4. Acquisition of iPS Cells -- 2.5. Culture of Recipient and Induced Cells -- 2.6. Increased Induced Efficiency -- 3. IPS CELLS: METHODS FOR IDENTITY AND SAFETY FOR REGENERATIVE MEDICINE -- 3.1. Cellular Biological Properties -- 3.2. Pluripotency -- 3.3. The Restrictions and Safety Issues for Regenerative Medicine -- 4. IPS CELLS: METHODS OF INDUCTION TOWARD DIFFERENT CELL TYPES, FACTORS INFLUENCING THE POTENTIAL OF DIFFERENTIATION, AND MECHANISMS DETERMINING THE FATE OF IPS CELL SAFTER INDUCTION -- 5. APPLICATION OF INDUCED IPS CELLS IN TISSUE ENGINEERING: CELL SOURCE, UNDERSTANDING OF CELL ULARPLURIPOTENCY AND DIFFERENTIATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Craniofacial Defects and their Regeneration: Destruction and Regeneration of the Periodontium, Craniofacial Tumors, Trauma, and Congenital Defects -- 4.1. INTRODUCTION -- 4.2. CRANIOFACIAL DEFECTS: PERIODONTIUM, CRANIOFACIAL TUMORS, TRAUMA, AND CONGENITAL DEFECTS -- 4.2.1. Periodontium Defects -- 4.2.2. Craniofacial Tumors.

4.2.2.1. Soft Tissue Defects (Lingual Defect, Penetrating Defect of Cheek, Palatal Defect, Tongue and Lip Defect, Parotid Gland and Duct Defect, Facial Nerve Defect) -- 4.2.2.2. Maxillofacial Combined Resection (Soft Tissue and Jaw Bone Defects) -- 4.2.3. Craniofacial Trauma -- 4.2.3.1. Soft Tissue Injuries -- 4.2.3.2. Fractures of the Jaws (Mandible and Maxilla) -- 4.2.3.3. Other Maxillofacial Fractures -- 4.2.4. Congenital Disease -- 4.2.4.1. Classification of Cleft Lip and Palate -- 4.2.4.2. Craniofacial Dysplasia -- 4.2.5. Discussion -- 4.2.6. Conclusions -- 4.3. CURRENT TECHNIQUES AND LIMITATIONS OF THERAPY FOR CRANIOFACIAL DEFECTS: COMPOSITE MATERIALS AND SELF-TRANSPLANTATION -- 4.3.1. Autologous Tissue Transplants -- 4.3.1.1. Characteristics of Autogenous Bone Grafts -- 4.3.1.2. Characteristics of Free Flaps -- 4.3.1.3. Flap Classification (Local Flaps, Pedicled Flaps, Vascularized Flaps, and Microvascular Free Tissue Transfer) -- 4.3.2. Use of Composite Materials for Craniofacial Defects -- 4.3.2.1. Features of HA -- 4.3.2.2. Types and Characteristics of Different Implants -- 4.4. IN VITRO STUDIES OF CRANIOFACIAL REGENERATION -- 4.4.1. Cell Source -- 4.4.1.1. ESCs -- 4.4.1.2. iPSCs -- 4.4.1.3. Adult Stem Cells -- 4.4.2. Tissue Regeneration -- 4.4.2.1. Bone Regeneration -- 4.4.2.2. Cartilage Tissue Regeneration -- 4.4.2.3. Oral Mucosa Regeneration -- 4.4.2.4. Fat Tissue Regeneration -- 4.4.3. Compatibility of the Regeneration Material -- 4.4.3.1. Evolution of Current Concepts of Biocompatibility -- 4.4.3.2. Growth Factors and Biologicals -- 4.5. IN VIVO STUDIES OF CRANIOFACIAL REGENERATION -- 4.5.1. Animal Models -- 4.5.1.1. Bone Defect Models -- 4.5.1.2. TMJ Defect Model -- 4.5.1.3. Cleft Lip and Palate Model -- 4.5.1.4. Facial Nerve Injury and Regeneration Model -- 4.5.2. Cell Source -- 4.5.2.1. BMSCs -- 4.5.2.2. ASCs -- 4.5.2.3. UCMSCs.

4.5.2.4. DPSCs -- 4.5.3. Scaffolds -- 4.5.3.1. Classification of Scaffold Materials -- 4.5.3.2. Three-Dimensional Structure -- 4.5.4. Growth Factors -- 4.5.4.1. BMP-2 -- 4.5.4.2. bFGF -- 4.5.4.3. TGF-β1 -- 4.5.4.4. VEGF -- 4.5.4.5. PRP -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Cell Sheets Engineering And Transplantation in MSCs Regeneration -- 1. INTRODUCTION -- 2. FACTORS INFLUENCE THE TRANSPLANTING ABILITY OF MSCS IN CELL SHEETS -- 2.1. Cell Source and Donor-Specific Factors -- 2.2. Substrate Characteristics and Soluble Factors -- 2.3. 3D-Culture and Pre-Vascularization -- 2.4. Immune Responses to Transplanted Cell Sheet -- 2.5. Combination With Scaffold Materials -- 3. METHODS FOR FABRICATION OF CELL SHEETS -- 3.1. Fabricate Cell Sheet Using Temperature-Responsive System -- 3.1.1. Electron Beam Lithographic (EBL) System -- 3.1.2. Plasma Treated System -- 3.1.3. Ultrathin Responsive System -- 3.1.4. Cell Adhesion Protein Coated Thermoresponsive Surfaces System -- 3.1.5. Spin-Coated System -- 3.1.6. Initiated Chemical Vapor Deposition (iCVD) System -- 3.2. Electroactive Responsive System -- 3.2.1. Electrochemical Self-Assembled Monolayer Gold Surface -- 3.2.2. Polyelectrolyte Surface -- 3.2.3. Sulfenyl-Gold Surface -- 3.2.4. Electrochemical Modified Micro-Patterning Surface -- 3.3. Light Responsive Cell Sheets Technology -- 3.3.1. Oxide Treated Surface Method -- 3.3.2. Light Sensitive Molecule/Material Coatings Method -- 3.3.3. Light Sensitive Molecular Combined With Protein Coatings Method -- 3.3.4. Nanoengineered Gold Coating Surface -- 3.3.5. PMB-PL Surface -- 3.4. PH Responsive Material Coating Method -- 3.4.1. Indium Tin Oxide Surface -- 3.4.2. Chitosan Surfaces -- 3.5. Magnetite Nanoparticles and Magnetic Force Method -- 3.6. Others -- 3.6.1. Varies in Culture Medium.

3.6.2. Automatic Fabrication of Cell Sheets Using Manipulator Technique -- 3.7. The Future and Development of The Cell Sheet Technologies -- 4. ANIMAL MODELS AND CLINICAL TRIALS OF CELLS SHEETS APPLICATION IN REGENERATION MEDICINE -- 4.1. Introduction -- 4.2. Animal Models -- 4.2.1. Corneal Epithelial -- 4.2.2. Retinal Pigment Epithelium (RPE) -- 4.2.3. Middle Ear Mucosal -- 4.2.4. Periodontal Tissue -- 4.2.5. Tooth -- 4.2.6. Calvarial Defect -- 4.2.7. Jaw Defect -- 4.2.8. Esophageal Mucosa -- 4.2.9. Tracheal Replacement -- 4.2.10. Thyroid Gland -- 4.2.11. Articular Cartilage -- 4.2.12. Lung Surface (Sealing of Lung Air Leak) -- 4.2.13. Myocardium -- 4.2.14. Hepatic Tissue -- 4.2.15. Pancreatic Islets -- 4.2.16. Renal Tissue -- 4.2.17. Urothelial Tissue -- 4.3. Clinical Trails -- 4.3.1. Corneal Reconstruction -- 4.3.2. Oral Mucosa -- 4.3.3. Esophageal Mucosa -- 4.3.4. Myocardium -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- New Methods of Scaffold Fabrication: Cell-instructive Scaffolds, Structural Scaffolds, Scaffolds Fabricated from Smart Materials Able to Respond Sensitively to Environmental Cues -- 1. INTRODUCTION -- 2. CELL-INSTRUCTIVE SCAFFOLDS -- 2.1. Synthesis and Fabrication of Cell-instructive Scaffolds -- 2.1.1. Spinning -- 2.1.2. Self-assembly -- 2.1.3. Thermally Induced Phase Separation (TIPS) -- 2.1.4. Printing -- 2.1.5. Ultraviolet (UV) Photolithography -- 2.2. Related Factors of Cell-instructive Scaffolds for Cell Behavior -- 2.2.1. Scaffold Mechanics -- 2.2.2. Scaffold Composition -- 2.2.3. Scaffold Topography -- 2.3. Methods for the Loading of Bioactive Molecules -- 2.3.1. Adsorption -- 2.3.2. Controlled-release Particles -- 2.3.3. Stimulus-based Delivery -- 3. STRUCTURAL SCAFFOLDS IN TISSUE ENGINEERING -- 3.1. Features of Different Tissue Matrices -- 3.1.1. Bone Matrix -- 3.1.2. Cartilage Matrix -- 3.1.3. Skin Matrix.

3.1.4. Scaffolds in Tooth Tissue Engineering.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.