ORPP logo
Image from Google Jackets

Geometric and Computational Spectral Theory.

By: Contributor(s): Material type: TextTextSeries: Contemporary MathematicsPublisher: Providence : American Mathematical Society, 2017Copyright date: ©2017Edition: 1st edDescription: 1 online resource (298 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470442583
Subject(s): Genre/Form: Additional physical formats: Print version:: Geometric and Computational Spectral TheoryDDC classification:
  • 515.35299999999995
LOC classification:
  • QA611.28.G46 2017
Online resources:
Contents:
Cover -- Title page -- Contents -- Preface -- The spectrum of the Laplacian: A geometric approach -- 1. Introduction, basic results and examples -- 2. Variational characterization of the spectrum and simple applications -- 3. Lower bounds for the first nonzero eigenvalue -- 4. Estimates on the conformal class -- 5. Another geometric method to construct upper bounds and applications. -- 6. The conformal spectrum -- Acknowledgments -- References -- An elementary introduction to quantum graphs -- 1. Introduction -- 2. Schrödinger equation on a metric graph -- 3. Dirichlet condition -- 4. Interlacing inequalities -- 5. Secular determinant -- 6. Symmetry and isospectrality -- 7. Magnetic Schrödinger operator and nodal count -- 8. Concluding remarks -- References -- A free boundary approach to the Faber-Krahn inequality -- 1. Introduction -- 2. Setting the variational framework -- 3. Proof of the Faber-Krahn inequality -- 4. Further remarks: higher order eigenvalues -- Acknowledgements -- References -- Some nodal properties of the quantum harmonic oscillator and other Schrödinger operators in ℝ² -- 1. Introduction and main results -- 2. A reminder on Hermite polynomials -- 3. Stern-like constructions for the harmonic oscillator in the case -odd -- 4. Proof of Theorem 1.3 -- 5. Proof of Theorem 1.4 -- 6. Eigenfunctions with "many" nodal domains, proof of Theorem 1.6 -- 7. On bounds for the length of the nodal set -- Acknowledgements -- References -- Numerical solution of linear eigenvalue problems -- 1. Introduction -- 2. Background in Numerical Linear Algebra -- 3. Small to moderate-sized matrices -- 4. Large and sparse matrices -- 5. Conclusions -- References -- Finite element methods for variational eigenvalue problems -- 1. Introduction -- 2. Problem setting -- 3. Galerkin approximation -- 4. The finite element method -- 5. Saddle point problems.
Appendix A. Programs for experiments -- Appendix B. Selected problems -- References -- Computation of eigenvalues, spectral zeta functions and zeta-determinants on hyperbolic surfaces -- 1. The method of particular solutions -- 2. The Method of Particular Solutions in a Geometric Context -- 3. Hyperbolic Surfaces and Teichmüller Space -- 4. The Method of Particular Solutions for Hyperbolic Surfaces -- 5. Heat Kernels, Spectral Asymptotics, and Zeta functions -- 6. The Selberg Trace Formula -- 7. Completeness of a Set of Eigenvalues -- Acknowledgements -- References -- Scales, blow-up and quasimode constructions -- 1. Introduction -- 2. A short introduction to manifolds with corners and resolutions -- 3. Generalities on quasimode constructions -- the main steps -- 4. Regular perturbations -- 5. Adiabatic limit with constant fibre eigenvalue -- 6. Adiabatic limit with variable fibre eigenvalue -- 7. Adiabatic limit with ends -- 8. Summary of the quasimodes constructions -- References -- Scattering for the geodesic flow on surfaces with boundary -- 1. Introduction -- 2. Geometric background -- 3. Scattering map, length function and -ray transform -- 4. Resolvents and boundary value problems for transport equations -- 5. Injectivity of X-ray transform for tensors -- 6. Some references -- Acknowledgement -- References -- Back Cover.
Summary: The book is a collection of lecture notes and survey papers based on the mini-courses given by leading experts at the 2015 Séminaire de Mathématiques Supérieures on Geometric and Computational Spectral Theory, held from June 15-26, 2015, at the Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada. The volume covers a broad variety of topics in spectral theory, highlighting its connections to differential geometry, mathematical physics and numerical analysis, bringing together the theoretical and computational approaches to spectral theory, and emphasizing the interplay between the two.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title page -- Contents -- Preface -- The spectrum of the Laplacian: A geometric approach -- 1. Introduction, basic results and examples -- 2. Variational characterization of the spectrum and simple applications -- 3. Lower bounds for the first nonzero eigenvalue -- 4. Estimates on the conformal class -- 5. Another geometric method to construct upper bounds and applications. -- 6. The conformal spectrum -- Acknowledgments -- References -- An elementary introduction to quantum graphs -- 1. Introduction -- 2. Schrödinger equation on a metric graph -- 3. Dirichlet condition -- 4. Interlacing inequalities -- 5. Secular determinant -- 6. Symmetry and isospectrality -- 7. Magnetic Schrödinger operator and nodal count -- 8. Concluding remarks -- References -- A free boundary approach to the Faber-Krahn inequality -- 1. Introduction -- 2. Setting the variational framework -- 3. Proof of the Faber-Krahn inequality -- 4. Further remarks: higher order eigenvalues -- Acknowledgements -- References -- Some nodal properties of the quantum harmonic oscillator and other Schrödinger operators in ℝ² -- 1. Introduction and main results -- 2. A reminder on Hermite polynomials -- 3. Stern-like constructions for the harmonic oscillator in the case -odd -- 4. Proof of Theorem 1.3 -- 5. Proof of Theorem 1.4 -- 6. Eigenfunctions with "many" nodal domains, proof of Theorem 1.6 -- 7. On bounds for the length of the nodal set -- Acknowledgements -- References -- Numerical solution of linear eigenvalue problems -- 1. Introduction -- 2. Background in Numerical Linear Algebra -- 3. Small to moderate-sized matrices -- 4. Large and sparse matrices -- 5. Conclusions -- References -- Finite element methods for variational eigenvalue problems -- 1. Introduction -- 2. Problem setting -- 3. Galerkin approximation -- 4. The finite element method -- 5. Saddle point problems.

Appendix A. Programs for experiments -- Appendix B. Selected problems -- References -- Computation of eigenvalues, spectral zeta functions and zeta-determinants on hyperbolic surfaces -- 1. The method of particular solutions -- 2. The Method of Particular Solutions in a Geometric Context -- 3. Hyperbolic Surfaces and Teichmüller Space -- 4. The Method of Particular Solutions for Hyperbolic Surfaces -- 5. Heat Kernels, Spectral Asymptotics, and Zeta functions -- 6. The Selberg Trace Formula -- 7. Completeness of a Set of Eigenvalues -- Acknowledgements -- References -- Scales, blow-up and quasimode constructions -- 1. Introduction -- 2. A short introduction to manifolds with corners and resolutions -- 3. Generalities on quasimode constructions -- the main steps -- 4. Regular perturbations -- 5. Adiabatic limit with constant fibre eigenvalue -- 6. Adiabatic limit with variable fibre eigenvalue -- 7. Adiabatic limit with ends -- 8. Summary of the quasimodes constructions -- References -- Scattering for the geodesic flow on surfaces with boundary -- 1. Introduction -- 2. Geometric background -- 3. Scattering map, length function and -ray transform -- 4. Resolvents and boundary value problems for transport equations -- 5. Injectivity of X-ray transform for tensors -- 6. Some references -- Acknowledgement -- References -- Back Cover.

The book is a collection of lecture notes and survey papers based on the mini-courses given by leading experts at the 2015 Séminaire de Mathématiques Supérieures on Geometric and Computational Spectral Theory, held from June 15-26, 2015, at the Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada. The volume covers a broad variety of topics in spectral theory, highlighting its connections to differential geometry, mathematical physics and numerical analysis, bringing together the theoretical and computational approaches to spectral theory, and emphasizing the interplay between the two.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.