Innovative Wastewater Treatment and Resource Recovery Technologies : Impacts on Energy, Economy and Environment.
Material type:
- text
- computer
- online resource
- 9781780407876
- 628.162
- TD745.I566 2017
Cover -- Copyright -- Contents -- List of contributors -- About the editors -- Preface: From Sanitary to Environmental Engineering. The 3R concept -- From sanitary to environmental engineering -- The 3 R concept in wastewater treatment -- References -- Part 1: Reducing Requirements and Impacts -- Part 1a: Reducing Energy Requirements -- Chapter 1: Nutrient removal -- 1.1 Introduction -- 1.1.1 Nutrient management regulation and implications on energy consumptions -- 1.1.2 Biological nutrients removal processes: microbial and energy overview -- 1.2 Reducing energy footprint now, by retrofitting -- 1.2.1 Sidestream technologies/systems -- 1.2.2 Mainstream technologies/systems -- 1.3 Reducing energy footprint tomorrow by re-thinking -- 1.3.1 Mainstream systems -- 1.4 Concluding remarks and sustainability indicators -- 1.5 References -- Chapter 2: Anaerobic treatment of municipal wastewater -- 2.1 Introduction -- 2.1.1 Energy nexus: Is anaerobic treatment a feasible way for municipal wastewater? -- 2.2 Anaerobic reactor types for municipal wastewater treatment -- 2.2.1 Anaerobic membrane bioreactor (AnMBR) -- 2.2.2 Upflow anaerobic sludge blanket reactor (UASB) -- 2.2.3 Expanded granular sludge bed reactor (EGSB) -- 2.2.4 Anaerobic sequencing batch reactor (ASBR) -- 2.2.5 Anaerobic baffled reactor (ABR) -- 2.2.6 Full scale applications -- 2.2.7 Pilot scale applications -- 2.2.8 Different lab-scale options - immobilization -- 2.3 Modeling of anaerobic treatment systems -- 2.3.1 Review of models -- 2.3.2 Model selection for a given application -- 2.4 Problems and future perspectives -- 2.4.1 Problems -- 2.4.2 Suggestions -- 2.5 Future aspects -- 2.6 Conclusions -- 2.7 References -- Chapter 3: Resource recovery from source separated domestic wastewater -- energy, water, nutrients and organics -- 3.1 Introduction.
3.2 Resources and pollutants in domestic wastewater -- 3.3 Anaerobic treatment core technology in 'new sanitation' -- 3.3.1 Organic sludge and heavy metals -- 3.3.2 Recovery of phosphorus during or after UASB treatment? -- 3.3.3 Removal or recovery of nitrogen? -- 3.4 Removal of micropollutants from black and grey water -- 3.5 Multi-criteria assessment on environmental and social aspects in new sanitation -- 3.6 New sanitation in practice in the netherlands -- 3.7 Conclusions -- 3.8 References -- Chapter 4: Wastewater treatment in algal systems -- 4.1 Introduction -- 4.2 Fundamentals of microalgae based systems -- 4.2.1 Photosynthetic aeration, symbiosis and algal-bacterial interactions -- 4.2.2 Carbon, nitrogen and phosphorous removal mechanisms -- 4.2.3 Strain selection -- 4.2.4 Influence of environmental parameters -- 4.3 Microalgae based systems used for wastewater treatment -- 4.3.1 Bioreactors -- 4.3.2 CO2 Addition, implications in the process -- 4.3.3 Harvesting of biomass -- 4.4 Considerations for a real scale installation -- 4.5 Conclusions -- 4.6 References -- Chapter 5: Niches for bioelectrochemical systems in sewage treatment plants -- 5.1 Introduction -- 5.1.1 Microbial fuel cells -- 5.1.2 Microbial electrolysis cell -- 5.2 BES in sewage treatment plants -- 5.2.1 Bioelectricity production -- 5.2.2 Bioelectrochemical hydrogen production in WWTP -- 5.2.3 Bioelectrochemical denitrification in WWTPs -- 5.3 Conclusions -- 5.4 References -- Part 1b: Reducing Space -- Chapter 6: Aerobic granular sludge reactors -- 6.1 Introduction -- 6.2 Applications of aerobic granulation -- 6.2.1 Industrial wastewater treatment -- 6.2.2 Municipal wastewater treatment -- 6.2.3 Toxic compounds degradation and biosorption of dyestuffs and heavy metals -- 6.3 Scale-up: from the lab to full scale -- 6.4 Critical aspects -- 6.5 Modelling granular sludge reactors.
6.5.1 Bioconversion processes -- 6.5.2 Intragranule heterogeneity -- 6.5.3 Intergranule heterogeneity -- 6.5.4 Flow patterns inside the bulk fluid -- 6.6 Conclusions -- 6.7 References -- Chapter 7: Membranes in wastewater treatment -- 7.1 Introduction -- 7.1.1 MBR's when does it make sense? -- 7.1.2 Energy demand reduction -- 7.1.3 Enhanced nutrients and/or refractory compounds removal -- 7.1.4 Synergistic effects utilization -- 7.2 Innovative use of membranes in wastewater treatment -- 7.2.1 Anaerobic membrane bioreactors -- 7.2.2 Membranes for gas transfer -- 7.2.3 Microbial desalination cells (MDC) - anionic and cationic exchange membranes -- 7.3 Conclusions and perspectives -- 7.4 References -- Chapter 8: Enhanced primary treatment -- 8.1 Introduction -- 8.2 Enhanced, high-rate primary treatment -- 8.2.1 Chemically enhanced primary treatment -- 8.2.2 Microscreen-based technologies -- 8.2.3 Vortex-based technologies -- 8.2.4 Inclined-surface settlers -- 8.3 Plant-wide impact of enhanced primary processes -- 8.3.1 Impact on secondary stage aeration demand -- 8.3.2 Impact on production, properties, and anaerobic degradability of sludge -- 8.3.3 Impact on nutrient removal -- 8.3.4 Impact on power consumption and greenhouse gas emissions -- 8.4 Mini-assessment -- 8.5 References -- Part 1c: Reducing Impacts -- Chapter 9: Innovative primary and secondary sewage treatment technologies for organic micropollutants abatement -- 9.1 Introduction -- 9.2 Enhancement of primary and secondary sewage treatment for organic micropollutants elimination -- 9.2.1 Enhanced primary clarification -- 9.2.2 Role of nitrifiers on organic micropollutants biotransformation -- 9.2.3 Membrane bioreactors -- 9.2.4 Granular sludge reactors -- 9.2.5 Partial nitritation - Anammox process -- 9.2.6 Anaerobic treatment -- 9.2.7 Hybrid systems.
9.3 Fate of transformation products during sewage treatment -- 9.4 Modelling micropollutants fate during sewage treatment -- 9.5 Conclusion -- 9.6 References -- Chapter 10: Post-treatment for micropollutants removal -- 10.1 Introduction -- 10.2 Chemical methods -- 10.2.1 Ozonation -- 10.2.2 Advanced Oxidation Processes -- 10.3 Physical methods -- 10.3.1 Adsorption to activated carbon -- 10.3.2 Membrane filtration -- 10.4 Costs -- 10.5 Conclusions -- 10.6 References -- Chapter 11: Technologies limiting gas and odour emissions -- 11.1 Introduction -- 11.2 Physical-chemical technologies -- 11.2.1 Absorption -- 11.2.2 Adsorption -- 11.2.3 Incineration -- 11.2.4 Advantages and drawbacks of physical-chemical techniques -- 11.3 Mature biological technologies -- 11.3.1 Biofilters -- 11.3.2 Biotrickling filters -- 11.3.3 Bioscrubbers -- 11.3.4 Advantages and drawbacks of mature biological technologies -- 11.4 Emerging biological technologies -- 11.4.1 Two-phase partitioning bioreactors -- 11.4.2 Activated sludge diffusion -- 11.4.3 Membrane bioreactors -- 11.4.4 Activated sludge and oxidized ammonium recycling -- 11.4.5 Advantages and drawbacks of emerging biological technologies -- 11.5 Conclusions -- 11.6 References -- Chapter 12: Reducing the impact of sludge -- 12.1 Introduction -- 12.2 Processes in the water line (A,B) -- 12.2.1 Lysis-cryptic growth -- 12.2.2 Maintenance metabolism -- 12.2.3 Uncoupling metabolism -- 12.2.4 Predation on bacteria -- 12.3 Pre-treatment processes in the sludge line (C,D,E,F) -- 12.3.1 Physical pre-treatments -- 12.4 Technologies for enhancing sludge stabilization (G) -- 12.4.1 Thermophilic anaerobic digestion: effect of thermal pre-treatmen -- 12.4.2 Temperature-phased anaerobic digestion -- 12.4.3 Sequential anaerobic-aerobic digestion of waste and mixed sludge.
12.5 Wet oxidation of sewage sludge coupled with anaerobic digestion of liquid residue (H) -- 12.5.1 Wet oxidation and its role in sewage sludge treatment -- 12.5.2 WO of sewage sludge: effect of process parameters -- 12.5.3 Reaction kinetics and process modelling -- 12.5.4 Treatment/disposal of residues -- 12.6 Comparative analysis of the processes -- 12.6.1 Enhanced hydrolysis. processes in the sludge line -- 12.6.2 Enhanced sludge stabilization processes -- 12.7 References -- Part 2: Re-using Water and Sludge -- Chapter 13: Producing high-quality recycled water -- 13.1 Introduction -- 13.2 Water quality constituents of concern and regulatory requirements -- 13.3 Treatment schemes for potable water reuse -- 13.4 Energy efficiency of potable water reuse schemes -- 13.5 Design requirements of potable water reuse schemes/ energy potential -- 13.6 State-of-the-art water quality monitoring approaches for high-quality recycled water -- 13.7 Conclusions -- 13.8 References -- Chapter 14: Producing sludge for agricultural applications -- 14.1 Introduction -- 14.2 Sludge production processes -- 14.2.1 Sludge production -- 14.2.2 Characteristics of sewage sludge -- 14.3 Sludge pre-treatment processes -- 14.3.1 Sludge pre-treatment technologies -- 14.3.2 Effects of pretreatment on the agricultural use and value of sludge -- 14.4 Sludge treatment processes -- 14.4.1 Biological processes -- 14.4.2 Drying processes -- 14.4.3 Thermal processes -- 14.4.4 Chemical processes -- 14.5 General effects of biosolids on agriculture -- 14.5.1 Effect on agricultural productivity and soil fertility -- 14.5.2 Health risks involved in application of sludge in agriculture -- 14.6 Case studies on agricultural application of sludge -- 14.7 Conclusions -- 14.8 References -- Part 3: Recovering Resource: Energy and Chemicals -- Chapter 15: Recovering energy from sludge.
15.1 Introduction.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.