Polymer Nanoclay Composites.
Material type:
- text
- computer
- online resource
- 9780323312721
- 620.1/92
- TA418.9.N35 -- .P659 2015eb
Front Cover -- Polymer Nanoclay Composites -- Copyright Page -- Contents -- Introduction -- Acknowledgments -- References -- 1 Processing of calcium montmorillonites for use in polymers -- 1.1 Introduction -- 1.2 Definitions -- 1.3 Morphology of montmorillonite which is important for use in the polymer industry -- 1.4 Introduction-the activation of calcium bentonites to achieve a high aspect ratio -- 1.4.1 Problems in determining the soda ash dosage for the deposit-specific optimized cation exchange -- 1.4.2 Chemical-mineralogical basis of the alkaline activation of bentonites and technical problems in the realization -- 1.4.3 Thixotropy and yield point of bentonite suspensions -- 1.4.4 Definitions of a chemical and technical degree of activation -- 1.4.5 Activation technique -- 1.4.6 Determination of the yield point -- 1.5 Criteria for the selection of calcium bentonites, their alkaline activation, and the achievable aspect ratio -- 1.6 Conclusions -- References -- 2 Chemical/physical preprocessing of nanoclay particles -- 2.1 Introduction-montmorillonite -- 2.2 Activation -- 2.2.1 Activation by acids -- 2.2.2 Characterization of activated MMT -- 2.2.2.1 EDX spectroscopy -- 2.2.2.2 FTIR spectroscopy -- 2.2.2.3 Thermogravimetric analysis -- 2.2.2.4 Medium angle X-ray scattering -- 2.3 Metal cation exchange -- 2.3.1 Metal-(II)-cations -- 2.3.2 Metal-(III)-cation -- 2.3.3 Characterization of metal cation-exchanged montmorillonite -- 2.3.3.1 EDX spectroscopy -- 2.3.3.2 FTIR spectroscopy -- 2.3.3.3 Thermogravimetry -- 2.4 Organomodification -- 2.4.1 Amino acid as modification reagent -- 2.4.2 Characterization of organomodified montmorrilonite -- 2.4.2.1 FTIR spectroscopy -- 2.4.2.2 Thermogravimetric analysis -- 2.4.2.3 MAXS measurements -- 2.5 Conclusions -- References -- 3 Processing of polymer-nanoclay composites -- 3.1 Nanoclay Processing Basics.
3.1.1 "Melt mixing" (compounding) -- 3.1.2 Characteristic process parameters -- 3.1.2.1 Residence time characteristics -- 3.1.2.2 Specific energy input -- 3.1.2.3 Case study: influence of induced shear energy on the properties of polyolefine nanocomposites [1] -- 3.1.2.3.1 Materials -- 3.1.2.3.2 Production of nanocomposites -- 3.1.2.3.3 Specimen -- 3.1.2.3.4 Tests -- 3.1.3 Calculation of the shear energy for extrusion and compounding -- 3.1.4 Calculation of the shear energy for injection molding -- 3.1.5 Visualization of nanoclay dispersion -- 3.1.6 Influence of shearing on Young's modulus and breaking strain -- 3.1.7 Influence on internal pressure creep time and longitudinal shrinkage -- 3.1.8 Conclusions -- 3.2 Advanced compounding -- 3.2.1 Case study: extrusion of PP nanocomposites by advanced compounding [2] -- 3.2.1.1 Materials and methods -- 3.2.1.1.1 Materials -- 3.2.1.1.2 Process design -- 3.2.1.1.3 Extensional melt rheology -- 3.2.1.2 Results and discussion -- 3.3 Injection mold compounding -- 3.3.1 Case Study -- 3.3.1.1 Experimental -- 3.3.1.2 Results -- 3.4 Conclusions -- References -- 4 Characterization of polymer nanocomposites based on layered silicates -- 4.1 Introduction -- 4.2 Offline characterization -- 4.2.1 Spectroscopic measurements -- 4.2.1.1 WAXS and TEM -- 4.2.1.2 Nuclear magnetic resonance -- 4.2.1.3 Infrared and Raman spectroscopy -- 4.2.2 Determination of physical properties -- 4.2.3 Rotational rheometry -- 4.2.4 Extensional rheometry -- 4.3 Inline And online characterization -- 4.3.1 Online extensional rheometry with the help of Rheotens equipment -- 4.3.2 Inline NIR investigations -- 4.3.2.1 Principal component analysis -- 4.3.2.2 Multiple linear regression -- 4.3.2.3 Principal component regression -- 4.3.2.4 Partial least squares -- 4.3.2.5 Diagnostic methods to assess the quality of the calculated model.
4.3.2.6 Pretreatment methods -- 4.3.2.7 Mean centering -- 4.3.2.8 Variance scale -- 4.3.2.9 Path length correction -- 4.3.2.10 Smoothing and derivation -- 4.3.2.11 Baseline shift -- 4.3.2.12 Outliers -- 4.3.2.13 Euclidean distance -- 4.3.2.14 Mahalanobis distance -- 4.3.2.15 Outlier species and their potential effect on models -- 4.3.2.16 NIR works -- 4.4 Conclusions -- References -- 5 Properties and applications of nanoclay composites -- 5.1 Introduction -- 5.2 Mechanical reinforcement capabilities of layered silicates -- 5.3 Effect of layered silicates on the rheological properties -- 5.4 The influence of layered silicates on barrier properties -- 5.5 The influence of layered silicates on tribology -- 5.6 Thermal conductivity of layered silicate polymer nanocomposites -- 5.7 Thermal stability of layered silicate polymer nanocomposites -- 5.8 Layered silicates for biodegradation application -- 5.9 Clays for drug delivery systems -- 5.10 Layered silicates as halogen-free FRs -- 5.10.1 Development of fire -- 5.10.2 Layered silicates as FR additives -- 5.11 Summary -- References -- 6 Safety issues of silica nanomaterials in the frame of industrial use -- 6.1 Introduction -- 6.2 Safety assessment according to REACh and guidance -- 6.2.1 Exposure and toxicity assessment -- 6.2.1.1 Exposure routes -- 6.2.1.2 Safety data sheets -- 6.2.2 Standardization -- 6.3 Nano-silica use in applications -- 6.3.1 Workplace safety -- 6.3.2 Environmental safety on nano-silica -- 6.4 Conclusions -- Acknowledgment -- Abbreviations -- References -- Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.