ORPP logo
Image from Google Jackets

Lasers and Electro-Optics Research at the Cutting Edge.

By: Material type: TextTextPublisher: Hauppauge : Nova Science Publishers, Incorporated, 2006Copyright date: ©2007Edition: 1st edDescription: 1 online resource (294 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781606925294
Subject(s): Genre/Form: Additional physical formats: Print version:: Lasers and Electro-Optics Research at the Cutting EdgeDDC classification:
  • 621.366
LOC classification:
  • TA1750 -- .L35 2007eb
Online resources:
Contents:
Intro -- LASERS AND ELECTRO-OPTICS RESEARCH AT THE CUTTING EDGE -- LASERS AND ELECTRO-OPTICS RESEARCH AT THE CUTTING EDGE -- CONTENTS -- PREFACE -- Chapter1RESONANTENHANCEMENTANDNEAR-FIELDLOCALIZATIONOFFSPULSESBYSUBWAVELENGTHNM-SIZEMETALSLITS -- Abstract -- 1.Introduction -- 2.NaturalSpatialandTemporalBroadeningofLightBeams -- 3.Model -- 4.Non-resonantLocalizationofContinuousWavesandFemtosecondPulses -- 4.1.Non-resonantNear-FieldLocalizationofContinuousWaves -- 4.2.Non-resonantNear-FieldLocalizationofFSPulses -- 4.3.LimitationsoftheModel -- 5.ResonantEnhancementandLocalizationofContinuousWavesandFSPulses -- 5.1.ResonantEnhancementandNear-FieldLocalizationofContinuousWaves -- 5.2.ResonantEnhancementandNear-FieldLocalizationofFSPulses -- 6.Conclusion -- Acknowledgments -- References -- Chapter 2SINGLE EXPERIMENTAL SETUP FOR HIGH SENSITIVEABSORPTION COEFFICIENT AND OPTICALNONLINEARITIES MEASUREMENTS -- Abstract -- I. Introduction -- II. Background -- a. The Gaussian Beam in a Homogeneous Medium -- b. The Z-scan Technique -- c. The Dual-beam Technique -- III. Present Work -- a. Experiment -- b. Results and Discussion -- Acknowledgements -- References -- Chapter 4 ENVIRONMENTAL MONITORING BY LASER RADAR -- Abstract -- 1. Introduction -- 2. Lidar Principle -- 2.1. Hard Target (Lithospheric Applications) -- 2.2. Dense Target (Hydrospheric Applications) -- 2.3. Transparent Target (Atmospheric Applications) -- 3. Lithospheric Applications -- 3.1. Laser Range-Finder for the Three-Dimensional Scan of UndergroundCavities -- 4. Hydrospheric Applications -- 4.1. Lidar Fluorosensor -- 4.2. Lidar Calibration of Satellite Imagery -- 4.2.1. Chlorophyll-a -- 4.2.2. Primary Productivity -- 4.2.3Chromophoric Dissolved Organic Matter -- 5. Atmospheric Applications -- 5.1. Elastic Lidar -- 5.2. Correlation Lidar -- 5.3. Differential Absorption Lidar -- 6. Conclusion.
Acknowledgements -- References -- Chapter 5 THERMAL EFFECTS AND POWER SCALING OF DIODE-PUMPED SOLID-STATE LASERS -- Abstract -- 1. Introduction -- 2. Modelling of Thermal Lens -- 3. Interferometric Measurments -- 4. Power Scaling -- 4.1. Fracture Limit -- 4.2. Optimal Design -- 5. Results -- Conclusion -- References -- Chapter 6 CATASTROPHE OPTICS IN THE STUDY OF SPREADING OF SESSILE DROPS -- Abstract -- Introduction -- Optical Catastrophe of Drop-Refracted Laser Beam -- Condition of Caustic Formation -- Interpretation of Images of Drop-Refracted Laser Beam -- Caustic Diffractions -- Higher Hierarchy of Optical Catastrophe -- Determine Sessile Drop Profiles by Catastrophe Optics -- Measurements of Drop Characteristic Parameters -- Contact Angles -- Foot Height -- Example of Applications -- Conclusion -- References -- Chapter 7 RECENT ADVANCES IN TEA CO2 LASER TECHNOLOGY -- Abstract -- 1. Introduction -- 1.1. Repetitive Operation -- 1.1.1. Role of Helium -- 1.1.1.1. Low Pressure CO2 Laser -- 1.1.1.2. Rapid Discharge Technique [9-13] -- 1.1.1.3. Seeding the Laser Gas Mixture with Low Ionisation Potential (LIP) Additives -- 1.1.1.4. Preconditioning the Inter-electrode Volume by Electrons from an External Source -- 1.1.1.5. Modified Excitation Circuit -- 1.1.1.5.1. Experimental System -- 1.1.1.5.2. Performance of the Laser -- 1.1.2. The Repetitive Pulser -- 1.1.2.1. Direct - Current (D-C) Resonant Charging -- 1.1.2.2. Command Resonant Charging -- 1.1.2.3. An Ideal Repetitive TE Laser Pulser -- 1.1.2.3.1. Rotating Dielectric Spark Gap -- 1.1.3. Repetitive Operation of a Helium Free Mini TEA CO2 Laser -- 1.1.3.1. Laser Head and Excitation Circuit -- 1.1.3.2. Experimental Results -- 1.1.4. Repetitive Operation: Switch-Less Pulser -- 1.1.4.1. Laser Head and the Excitation Circuit -- 1.1.4.2. Results and Discussion -- 1.2. Single Mode Operation.
1.2.1. Single Mode hybrid CO2 Laser with Increased Efficiency -- 1.2.2. Single Mode Lasing From a TEA CO2 Laser by the Elimination of Spatial Hole Burning Effect -- 1.3. Conclusions -- References -- Chapter 8NOVEL BISMUTH-ACTIVATED GLASSESWITH INFRARED LUMINESCENCE -- Abstract -- 1. Introduction -- 2. Experimental Section -- 3. Results and Discussions -- 3.1. Current Research Status of Bi-doped Glasses with near InfraredLuminescence -- 3.1.1. Bi-doped SiO2-Al2O3 Glasses -- 3.1.2. Bi-doped GeO2-Al2O3 Glasses -- 3.1.3. Bi-doped P2O5-Al2O3 and B2O3-Al2O3 Glasses -- 3.1.4. Bi-doped MO2-N2Ox (M=Ge, Si -- N=Ga, B, Ta) Glasses -- 3.1.5. Whether Does the near Infrared Luminescence come from Cr4+or from Bismuth in Aluminosilicate Glass Codoped with Cr2O3 and Bi2O3? -- 3.2. Studies on Infrared Luminescence Mechanism -- 3.3. Future Development of Bismuth-Doped Optical Materials -- 3.3.1. Figure-of-Merits of Bandwidth and Gain of Bi-doped Glasses -- 3.3.2. Excited State Absorption of Bi-doped Glasses -- 3.3.3. Bi-doped Glasses: The Promising Candidates as Gain Mediumsof Amplifiers Working at Around 1400nm -- 3.3.4. Problems Impeding the Development of Bi-doped Glasses -- 4. Conclusion -- References -- INDEX -- Blank Page.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- LASERS AND ELECTRO-OPTICS RESEARCH AT THE CUTTING EDGE -- LASERS AND ELECTRO-OPTICS RESEARCH AT THE CUTTING EDGE -- CONTENTS -- PREFACE -- Chapter1RESONANTENHANCEMENTANDNEAR-FIELDLOCALIZATIONOFFSPULSESBYSUBWAVELENGTHNM-SIZEMETALSLITS -- Abstract -- 1.Introduction -- 2.NaturalSpatialandTemporalBroadeningofLightBeams -- 3.Model -- 4.Non-resonantLocalizationofContinuousWavesandFemtosecondPulses -- 4.1.Non-resonantNear-FieldLocalizationofContinuousWaves -- 4.2.Non-resonantNear-FieldLocalizationofFSPulses -- 4.3.LimitationsoftheModel -- 5.ResonantEnhancementandLocalizationofContinuousWavesandFSPulses -- 5.1.ResonantEnhancementandNear-FieldLocalizationofContinuousWaves -- 5.2.ResonantEnhancementandNear-FieldLocalizationofFSPulses -- 6.Conclusion -- Acknowledgments -- References -- Chapter 2SINGLE EXPERIMENTAL SETUP FOR HIGH SENSITIVEABSORPTION COEFFICIENT AND OPTICALNONLINEARITIES MEASUREMENTS -- Abstract -- I. Introduction -- II. Background -- a. The Gaussian Beam in a Homogeneous Medium -- b. The Z-scan Technique -- c. The Dual-beam Technique -- III. Present Work -- a. Experiment -- b. Results and Discussion -- Acknowledgements -- References -- Chapter 4 ENVIRONMENTAL MONITORING BY LASER RADAR -- Abstract -- 1. Introduction -- 2. Lidar Principle -- 2.1. Hard Target (Lithospheric Applications) -- 2.2. Dense Target (Hydrospheric Applications) -- 2.3. Transparent Target (Atmospheric Applications) -- 3. Lithospheric Applications -- 3.1. Laser Range-Finder for the Three-Dimensional Scan of UndergroundCavities -- 4. Hydrospheric Applications -- 4.1. Lidar Fluorosensor -- 4.2. Lidar Calibration of Satellite Imagery -- 4.2.1. Chlorophyll-a -- 4.2.2. Primary Productivity -- 4.2.3Chromophoric Dissolved Organic Matter -- 5. Atmospheric Applications -- 5.1. Elastic Lidar -- 5.2. Correlation Lidar -- 5.3. Differential Absorption Lidar -- 6. Conclusion.

Acknowledgements -- References -- Chapter 5 THERMAL EFFECTS AND POWER SCALING OF DIODE-PUMPED SOLID-STATE LASERS -- Abstract -- 1. Introduction -- 2. Modelling of Thermal Lens -- 3. Interferometric Measurments -- 4. Power Scaling -- 4.1. Fracture Limit -- 4.2. Optimal Design -- 5. Results -- Conclusion -- References -- Chapter 6 CATASTROPHE OPTICS IN THE STUDY OF SPREADING OF SESSILE DROPS -- Abstract -- Introduction -- Optical Catastrophe of Drop-Refracted Laser Beam -- Condition of Caustic Formation -- Interpretation of Images of Drop-Refracted Laser Beam -- Caustic Diffractions -- Higher Hierarchy of Optical Catastrophe -- Determine Sessile Drop Profiles by Catastrophe Optics -- Measurements of Drop Characteristic Parameters -- Contact Angles -- Foot Height -- Example of Applications -- Conclusion -- References -- Chapter 7 RECENT ADVANCES IN TEA CO2 LASER TECHNOLOGY -- Abstract -- 1. Introduction -- 1.1. Repetitive Operation -- 1.1.1. Role of Helium -- 1.1.1.1. Low Pressure CO2 Laser -- 1.1.1.2. Rapid Discharge Technique [9-13] -- 1.1.1.3. Seeding the Laser Gas Mixture with Low Ionisation Potential (LIP) Additives -- 1.1.1.4. Preconditioning the Inter-electrode Volume by Electrons from an External Source -- 1.1.1.5. Modified Excitation Circuit -- 1.1.1.5.1. Experimental System -- 1.1.1.5.2. Performance of the Laser -- 1.1.2. The Repetitive Pulser -- 1.1.2.1. Direct - Current (D-C) Resonant Charging -- 1.1.2.2. Command Resonant Charging -- 1.1.2.3. An Ideal Repetitive TE Laser Pulser -- 1.1.2.3.1. Rotating Dielectric Spark Gap -- 1.1.3. Repetitive Operation of a Helium Free Mini TEA CO2 Laser -- 1.1.3.1. Laser Head and Excitation Circuit -- 1.1.3.2. Experimental Results -- 1.1.4. Repetitive Operation: Switch-Less Pulser -- 1.1.4.1. Laser Head and the Excitation Circuit -- 1.1.4.2. Results and Discussion -- 1.2. Single Mode Operation.

1.2.1. Single Mode hybrid CO2 Laser with Increased Efficiency -- 1.2.2. Single Mode Lasing From a TEA CO2 Laser by the Elimination of Spatial Hole Burning Effect -- 1.3. Conclusions -- References -- Chapter 8NOVEL BISMUTH-ACTIVATED GLASSESWITH INFRARED LUMINESCENCE -- Abstract -- 1. Introduction -- 2. Experimental Section -- 3. Results and Discussions -- 3.1. Current Research Status of Bi-doped Glasses with near InfraredLuminescence -- 3.1.1. Bi-doped SiO2-Al2O3 Glasses -- 3.1.2. Bi-doped GeO2-Al2O3 Glasses -- 3.1.3. Bi-doped P2O5-Al2O3 and B2O3-Al2O3 Glasses -- 3.1.4. Bi-doped MO2-N2Ox (M=Ge, Si -- N=Ga, B, Ta) Glasses -- 3.1.5. Whether Does the near Infrared Luminescence come from Cr4+or from Bismuth in Aluminosilicate Glass Codoped with Cr2O3 and Bi2O3? -- 3.2. Studies on Infrared Luminescence Mechanism -- 3.3. Future Development of Bismuth-Doped Optical Materials -- 3.3.1. Figure-of-Merits of Bandwidth and Gain of Bi-doped Glasses -- 3.3.2. Excited State Absorption of Bi-doped Glasses -- 3.3.3. Bi-doped Glasses: The Promising Candidates as Gain Mediumsof Amplifiers Working at Around 1400nm -- 3.3.4. Problems Impeding the Development of Bi-doped Glasses -- 4. Conclusion -- References -- INDEX -- Blank Page.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.