ORPP logo
Image from Google Jackets

Phase-Matched High Order Harmonic Generation and Application.

By: Contributor(s): Material type: TextTextPublisher: Hauppauge : Nova Science Publishers, Incorporated, 2013Copyright date: ©2013Edition: 1st edDescription: 1 online resource (176 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781626181724
Subject(s): Genre/Form: Additional physical formats: Print version:: Phase-Matched High Order Harmonic Generation and ApplicationDDC classification:
  • 621.36/63
LOC classification:
  • QC482.S6 -- D56 2013eb
Online resources:
Contents:
Intro -- PHASE-MATCHED HIGH ORDER HARMONIC GENERATION AND APPLICATION -- PHASE-MATCHED HIGH ORDER HARMONIC GENERATION AND APPLICATION -- Library of Congress Cataloging-in-Publication Data -- Contents -- Summary -- Chapter 1: High Harmonic Generation -- 1.1. Overview of High Harmonic Generation -- 1.1.1.History of High Harmonic Generation -- 1.1.2. Principles of High Harmonic Generation -- 1.1.2.1. Extreme Nonlinear Optics -- 1.1.2.2. Three Step Model -- 1.1.2.3. Typical HHG Spectrum -- 1.1.2.4. Strong Field Approximation (SFA) Model (Quantum Model) -- 1.1.3. Phase Matching in High Harmonic Generation -- 1.1.3.1. Definition of Phase Matching -- 1.1.3.2. Phase Mismatch -- Geometrical Phase Mismatch -- Neutral Gas Dispersion Phase Mismatch -- Plasma Dispersion Phase Mismatch -- Atomic Dipole Phase Mismatch -- 1.1.3.3. Reabsorption of Harmonic Emission -- 1.1.3.4. Phase Matching in High Harmonic Generation -- 1.1.4. Quasi Phase Matching in High Harmonic Generation -- 1.2. General Experimental Setup -- 1.2.1. High Power Femtosecond Laser System -- 1.2.1.1. Femtosecond Oscillator -- 1.2.1.2. Amplification System -- Quantronix Odin-II HEAmplifier -- Quantronix Cryo Add-on Amplifier -- 1.2.2. Fundamental Experimental High Harmonic Generation Setup -- 1.2.2.1. Fundamental Arrangement and HHG Process -- 1.2.2.2. Fundamental HHG Apparatus -- Semi-infinite Gas Cell -- Filtering Chamber -- Experimental Chamber -- Extreme Ultraviolet Spectrometer -- Detector -- Conclusion -- Chapter 2: Enhancement of High Harmonic Generation Source -- 2.1. Enhancement of High Harmonic Generation Source by Using a Combination of a Lens and an Axicon -- 2.1.1. Introduction -- 2.1.2. Phase Matching Condition in a Bessel Gauss Geometry -- 2.1.2.1. Characteristics of a Bessel Gauss Beam -- 2.1.2.2. Phase Mismatchin the Bessel Gaussian Geometry -- 2.1.3. Experiment.
2.1.3.1. Experimental Setup -- 2.1.3.2. Results and Interpretation -- Conclusion -- 2.2. Enhancementof High Harmonic Generation Source by Using an Off-Axis Beam -- 2.2.1. Introduction -- 2.2.2. Influence of the Off-axis Beam on the Fundamental Field Generating HHG -- 2.2.3. Influence of theOff-axis Beam on the HHG field -- 2.2.4. Experiment -- 2.2.4.1. Experimental Setup -- 2.2.4.2. Results and Interpretation -- Conclusion -- Chapter 3: Influence of Driving Laser on Spectral Features of High Harmonic Generation -- 3.1. Introduction -- 3.2. Theoretical Background -- 3.2.1. Influence of Driving Laser Intensity on the Harmonic Yield -- 3.2.2.Influence of Modulation of the Harmonic Dipole Phase on the Spectrum of HHG -- 3.2.3. Influence of the Harmonic Propagation on the Spectrum of HHG -- 3.3. Experiment and Interpretation -- 3.3.1. Influence of Phase Modulation of the Fundamental Laser Field on the Harmonic Spectrum -- 3.3.2. Influence of the Driving Laser Intensity on Spectral Feature of HHG -- 3.3.2.1. Experimental Setup -- 3.3.2.2. Study of Driving Laser Intensity Dependence of the Harmonic Spectral Features without Limitationof Ionization Fraction -- 3.3.2.3. Study of Driving Laser Intensity Dependence of the Harmonic Spectral Features with Limitation of Ionization -- Conclusion -- Chapter 4: Phase Matched High Harmonic Generation for the Study of Aligned Molecules -- 4.1. Introduction -- 4.2. Alignment of Molecules in Intense Laser Fields -- 4.2.1. Adiabatic Alignment -- 4.2.2. Non-adiabatic Alignment -- 4.3. Rotational Wave Packet Dynamics -- 4.4. Molecular Alignment Contribution to Ionization Process -- 4.5. Rotational Raman Contribution to the Nonlinear Refractive Index -- 4.6. Experiment -- 4.6.1. Experimental Setup -- 4.6.2. Results and Interpretation -- Conclusion -- Chatper 5: Coherent Diffractive Imaging Using 13.5 nm High Harmonic Source.
5.1. Introduction -- 5.2. Theoretical Background of Coherent Diffractive Imaging -- 5.2.1. Introduction to Coherent Diffractive Imaging Technique -- 5.2.2. Phase Retrieval -- 6.2.3. Experimental Requirements -- 5.3. Coherent Diffractive Imaging Using 13.5 nm high harmonic Source -- 5.3.1. Experimental Setup and Conditions -- 5.3.2. Samples -- 5.3.3. Generation of the Harmonic Source around 13.5 nm -- 5.3.4. Spatial Coherence of the Harmonic Source -- 5.3.4.1 Degree of Spatial Coherence of the Harmonic Source -- 5.3.4.2. Measurement of Degree of Spatial Coherence -- 5.3.5. Spectrum Reconstruction from Young's Double Slit Interference Pattern -- 5.3.6. Acquisition of Diffractive Images -- 5.3.7. Imaging Results -- 5.3.8. Limitations -- Conclusion -- References -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- PHASE-MATCHED HIGH ORDER HARMONIC GENERATION AND APPLICATION -- PHASE-MATCHED HIGH ORDER HARMONIC GENERATION AND APPLICATION -- Library of Congress Cataloging-in-Publication Data -- Contents -- Summary -- Chapter 1: High Harmonic Generation -- 1.1. Overview of High Harmonic Generation -- 1.1.1.History of High Harmonic Generation -- 1.1.2. Principles of High Harmonic Generation -- 1.1.2.1. Extreme Nonlinear Optics -- 1.1.2.2. Three Step Model -- 1.1.2.3. Typical HHG Spectrum -- 1.1.2.4. Strong Field Approximation (SFA) Model (Quantum Model) -- 1.1.3. Phase Matching in High Harmonic Generation -- 1.1.3.1. Definition of Phase Matching -- 1.1.3.2. Phase Mismatch -- Geometrical Phase Mismatch -- Neutral Gas Dispersion Phase Mismatch -- Plasma Dispersion Phase Mismatch -- Atomic Dipole Phase Mismatch -- 1.1.3.3. Reabsorption of Harmonic Emission -- 1.1.3.4. Phase Matching in High Harmonic Generation -- 1.1.4. Quasi Phase Matching in High Harmonic Generation -- 1.2. General Experimental Setup -- 1.2.1. High Power Femtosecond Laser System -- 1.2.1.1. Femtosecond Oscillator -- 1.2.1.2. Amplification System -- Quantronix Odin-II HEAmplifier -- Quantronix Cryo Add-on Amplifier -- 1.2.2. Fundamental Experimental High Harmonic Generation Setup -- 1.2.2.1. Fundamental Arrangement and HHG Process -- 1.2.2.2. Fundamental HHG Apparatus -- Semi-infinite Gas Cell -- Filtering Chamber -- Experimental Chamber -- Extreme Ultraviolet Spectrometer -- Detector -- Conclusion -- Chapter 2: Enhancement of High Harmonic Generation Source -- 2.1. Enhancement of High Harmonic Generation Source by Using a Combination of a Lens and an Axicon -- 2.1.1. Introduction -- 2.1.2. Phase Matching Condition in a Bessel Gauss Geometry -- 2.1.2.1. Characteristics of a Bessel Gauss Beam -- 2.1.2.2. Phase Mismatchin the Bessel Gaussian Geometry -- 2.1.3. Experiment.

2.1.3.1. Experimental Setup -- 2.1.3.2. Results and Interpretation -- Conclusion -- 2.2. Enhancementof High Harmonic Generation Source by Using an Off-Axis Beam -- 2.2.1. Introduction -- 2.2.2. Influence of the Off-axis Beam on the Fundamental Field Generating HHG -- 2.2.3. Influence of theOff-axis Beam on the HHG field -- 2.2.4. Experiment -- 2.2.4.1. Experimental Setup -- 2.2.4.2. Results and Interpretation -- Conclusion -- Chapter 3: Influence of Driving Laser on Spectral Features of High Harmonic Generation -- 3.1. Introduction -- 3.2. Theoretical Background -- 3.2.1. Influence of Driving Laser Intensity on the Harmonic Yield -- 3.2.2.Influence of Modulation of the Harmonic Dipole Phase on the Spectrum of HHG -- 3.2.3. Influence of the Harmonic Propagation on the Spectrum of HHG -- 3.3. Experiment and Interpretation -- 3.3.1. Influence of Phase Modulation of the Fundamental Laser Field on the Harmonic Spectrum -- 3.3.2. Influence of the Driving Laser Intensity on Spectral Feature of HHG -- 3.3.2.1. Experimental Setup -- 3.3.2.2. Study of Driving Laser Intensity Dependence of the Harmonic Spectral Features without Limitationof Ionization Fraction -- 3.3.2.3. Study of Driving Laser Intensity Dependence of the Harmonic Spectral Features with Limitation of Ionization -- Conclusion -- Chapter 4: Phase Matched High Harmonic Generation for the Study of Aligned Molecules -- 4.1. Introduction -- 4.2. Alignment of Molecules in Intense Laser Fields -- 4.2.1. Adiabatic Alignment -- 4.2.2. Non-adiabatic Alignment -- 4.3. Rotational Wave Packet Dynamics -- 4.4. Molecular Alignment Contribution to Ionization Process -- 4.5. Rotational Raman Contribution to the Nonlinear Refractive Index -- 4.6. Experiment -- 4.6.1. Experimental Setup -- 4.6.2. Results and Interpretation -- Conclusion -- Chatper 5: Coherent Diffractive Imaging Using 13.5 nm High Harmonic Source.

5.1. Introduction -- 5.2. Theoretical Background of Coherent Diffractive Imaging -- 5.2.1. Introduction to Coherent Diffractive Imaging Technique -- 5.2.2. Phase Retrieval -- 6.2.3. Experimental Requirements -- 5.3. Coherent Diffractive Imaging Using 13.5 nm high harmonic Source -- 5.3.1. Experimental Setup and Conditions -- 5.3.2. Samples -- 5.3.3. Generation of the Harmonic Source around 13.5 nm -- 5.3.4. Spatial Coherence of the Harmonic Source -- 5.3.4.1 Degree of Spatial Coherence of the Harmonic Source -- 5.3.4.2. Measurement of Degree of Spatial Coherence -- 5.3.5. Spectrum Reconstruction from Young's Double Slit Interference Pattern -- 5.3.6. Acquisition of Diffractive Images -- 5.3.7. Imaging Results -- 5.3.8. Limitations -- Conclusion -- References -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.