ORPP logo
Image from Google Jackets

X-Ray Absorption and X-Ray Emission Spectroscopy : Theory and Applications.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2016Copyright date: ©2016Edition: 1st edDescription: 1 online resource (920 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118844267
Subject(s): Genre/Form: Additional physical formats: Print version:: X-Ray Absorption and X-Ray Emission SpectroscopyLOC classification:
  • QD96.X2 -- .X1924 2016eb
Online resources:
Contents:
Intro -- X-Ray Absorption and X-Ray Emission Spectroscopy, VOLUME I -- Contents -- List of Contributors -- Foreword -- References -- Part I Introduction: History, XAS, XES, and Their Impact on Science -- 1 Introduction: Historical Perspective on XAS -- 1.1 Historical Overview of 100 Years of X-Ray Absorption: A Focus on the Pioneering 1913−1971 Period -- 1.2 About the Book: A Few Curiosities, Some Statistics, and a Brief Overview -- Acknowledgement -- References -- Part II Experiment and Theory -- 2 From Synchrotrons to FELs: How Photons Are Produced -- Beamline Optics and Beam Characteristics -- 2.1 Photon Emission by Accelerated Charges: From the Classical Case to the Relativistic Limit -- 2.2 Undulators, Wigglers, and Bending Magnets -- 2.2.1 Undulators -- 2.2.2 Wigglers -- 2.2.3 Bending magnets -- 2.2.4 High flux, high brightness -- 2.3 The Time Structure of Synchrotron Radiation -- 2.4 Elements of Beamline Optics -- 2.4.1 Focusing devices -- 2.4.2 Monochromators -- 2.4.3 Detectors -- 2.5 Free Electron Lasers -- 2.5.1 FEL optical amplification -- 2.5.2 Optical amplification in an X-FEL: Details -- 2.5.3 Saturation -- 2.5.4 X-FEL time structure: New opportunities for spectroscopy -- 2.5.5 Time coherence and seeding -- References -- 3 Real-Space Multiple-Scattering Theory of X-Ray Spectra -- 3.1 Introduction -- 3.2 Theory -- 3.2.1 Independent-particle approximation -- 3.2.2 Real-space multiple-scattering theory -- 3.2.3 Many body effects in x-ray spectra -- 3.3 Applications -- 3.3.1 XAS, EXAFS, XANES -- 3.3.2 EELS -- 3.3.3 XES -- 3.3.4 XMCD -- 3.3.5 NRIXS -- 3.3.6 RIXS -- 3.3.7 Compton scattering -- 3.3.8 Optical constants -- 3.4 Conclusion -- References -- 4 Theory of X-Ray Absorption Near Edge Structure -- 4.1 Introduction -- 4.2 The X-Ray Absorption Phenomena -- 4.2.1 Probing material -- 4.2.2 The different spectroscopies.
4.3 X-Ray Matter Interaction -- 4.3.1 Interaction Hamiltonian -- 4.3.2 Absorption cross-section for the transition between two states -- 4.3.3 State description -- 4.3.4 The transition matrix -- 4.4 XANES General Formulation -- 4.4.1 Interaction times and the multi-electronic problem -- 4.4.2 Absorption cross-section main equation -- 4.5 XANES Simulations in the Mono-Electronic Scheme -- 4.5.1 From multi- to mono-electronic -- 4.5.2 The different methods -- 4.5.3 The multiple scattering theory -- 4.6 Multiplet Ligand Field Theory -- 4.6.1 Atomic multiplets -- 4.6.2 The crystal field -- 4.7 Current Theoretical Developments -- 4.8 Tensorial Approaches -- 4.9 Conclusion -- References -- 5 How to Start an XAS Experiment -- 5.1 Introduction -- 5.2 Plan the Experiment -- 5.2.1 Identify the scientific question -- 5.2.2 Can XAS solve the problem? -- 5.2.3 Select the best beamline and measurement mode -- 5.2.4 Writing the proposal -- 5.3 Preparing the Experiment -- 5.3.1 Experimental design -- 5.3.2 Best sample conditions for data acquisition -- 5.3.3 Sample preparation -- 5.4 Performing the Experiment -- 5.4.1 Initial set-up and optimization of signal -- 5.4.2 Data acquisition -- References -- 6 Hard X-Ray Photon-in/Photon-out Spectroscopy: Instrumentation, Theory and Applications -- 6.1 Introduction -- 6.2 History -- 6.3 Basic Theory of XES -- 6.3.1 One- and multi-electron description -- 6.3.2 X-ray Raman scattering spectroscopy -- 6.4 Chemical Sensitivity of X-Ray Emission -- 6.4.1 Core-to-core transitions -- 6.4.2 Valence-to-core transitions -- 6.5 HERFD and RIXS -- 6.6 Experimental X-Ray Emission Spectroscopy -- 6.6.1 Sources for x-ray emission spectroscopy -- 6.6.2 X-ray emission spectrometers -- 6.6.3 Detectors -- 6.7 Conclusion -- References -- 7 QEXAFS: Techniques and Scientific Applications for Time-Resolved XAS -- 7.1 Introduction.
7.2 History and Basics of QEXAFS -- 7.3 Monochromators and Beamlines for QEXAFS -- 7.3.1 QEXAFS with conventional monochromators -- 7.3.2 Piezo-QEXAFS for the millisecond time range -- 7.3.3 Dedicated oscillating monochromators for QEXAFS -- 7.4 Detectors and Readout Systems -- 7.4.1 Requirements for detectors -- 7.4.2 Gridded ionization chambers -- 7.4.3 Data acquisition -- 7.4.4 Angular encoder -- 7.5 Applications of QEXAFS in Chemistry -- 7.5.1 Following the fate of metal contaminants at the mineral-water interface -- 7.5.2 Identifying the catalytic active sites in gas phase reactions -- 7.5.3 Identifying the catalytic active site in liquid phase reactions -- 7.5.4 Synthesis of nanoparticles -- 7.5.5 Identification of reaction intermediates: Modulation excitation XAS -- 7.6 Conclusion and Future Perspectives -- Acknowledgements -- References -- 8 Time-Resolved XAS Using an Energy Dispersive Spectrometer: Techniques and Applications -- 8.1 Introduction -- 8.2 Energy Dispersive X-Ray Absorption Spectroscopy -- 8.2.1 Historical development of EDXAS and overview of existing facilities -- 8.2.2 Principles: Source, optics, detection -- 8.2.3 Dispersive versus scanning spectrometer for time-resolved experiments -- 8.2.4 Description of the EDXAS beamline at ESRF -- 8.3 From the Minute Down to the Ms: Filming a Chemical Reaction in situ -- 8.3.1 Technical aspects -- 8.3.2 First stages of nanoparticle formation -- 8.3.3 Working for cleaner cars: Automotive exhaust catalyst -- 8.3.4 Reaction mechanisms and intermediates -- 8.3.5 High temperature oxidation of metallic iron -- 8.4 Down to the µs Regime: Matter under Extreme Conditions -- 8.4.1 Technical aspects -- 8.4.2 Melts at extreme pressure and temperature -- 8.4.3 Spin transitions at high magnetic field -- 8.4.4 Fast ohmic ramp excitation towards the warm dense matter regime.
8.5 Playing with a 100 ps Single Bunch -- 8.5.1 Technical aspects -- 8.5.2 Detection and characterization of photo-excited states in Cu+ complexes -- 8.5.3 Opportunities for investigating laser-shocked matter -- 8.5.4 Non-synchrotron EDXAS -- 8.6 Conclusion -- References -- 9 X-Ray Transient Absorption Spectroscopy -- 9.1 Introduction -- 9.2 Pump-Probe Spectroscopy -- 9.2.1 Background -- 9.2.2 The basic set-up -- 9.3 Experimental Considerations -- 9.3.1 XTA at a synchrotron source -- 9.3.2 XTA at x-ray free electron laser sources -- 9.4 Transient Structural Information Investigated by XTA -- 9.4.1 Metal center oxidation state -- 9.4.2 Electron configuration and orbital energies of x-ray absorbing atoms -- 9.4.3 Transient coordination geometry of the metal center -- 9.5 X-Ray Pump-Probe Absorption Spectroscopy: Examples -- 9.5.1 Excited state dynamics of transition metal complexes (TMCs) -- 9.5.2 Interfacial charge transfer in hybrid systems -- 9.5.3 XTA studies of metal center active site structures in metalloproteins -- 9.5.4 XTA using the x-ray free electron lasers -- 9.5.5 Other XTA application examples -- 9.6 Perspective of Pump-Probe X-Ray Spectroscopy -- Acknowledgments -- References -- 10 Space-Resolved XAFS, Instrumentation and Applications -- 10.1 Space-Resolving Techniques for XAFS -- 10.2 Beam-Focusing Instrumentation for Microbeam Production -- 10.2.1 Total reflection mirror systems -- 10.2.2 Fresnel zone plate optics for x-ray microbeam -- 10.2.3 General issues of beam-focusing optics -- 10.2.4 Requirements on beam stability in microbeam XAFS experiments -- 10.3 Examples of Beam-Focusing Instrumentation -- 10.3.1 The total-reflection mirror system -- 10.3.2 Fresnel zone plate system -- 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science -- 10.4.1 Speciation of heavy metals in willow.
10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit -- 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics -- 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff -- 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell -- 10.5 Conclusion and Outlook -- References -- 11 Quantitative EXAFS Analysis -- 11.1 A brief history of EXAFS theory -- 11.1.1 The n-body decomposition in GNXAS -- 11.1.2 The exact curved wave theory in EXCURVE -- 11.1.3 The path expansion in FEFF -- 11.2 Theoretical calculation of EXAFS scattering factors -- 11.2.1 The pathfinder -- 11.2.2 The fitting metric -- 11.2.3 Constraints on parameters of the fit -- 11.2.4 Fitting statistics -- 11.2.5 Extending the evaluation of -- 11.2.6 Other analytic methods -- 11.3 Practical examples of EXAFS analysis -- 11.3.1 Geometric constraints on bond lengths -- 11.3.2 Constraints on the coordination environment -- 11.3.3 Constraints and multiple data set analysis -- 11.4 Conclusion -- References -- 12 XAS Spectroscopy: Related Techniques and Combination with Other Spectroscopic and Scattering Methods -- 12.1 Introduction -- 12.2 Atomic Pair Distribution Analysis of Total Scattering Data -- 12.2.1 Theoretical description -- 12.2.2 Examples of PDF analysis -- 12.3 Diffraction Anomalous Fine Structure (DAFS) -- 12.3.1 Theoretical description -- 12.3.2 Examples of DAFS -- 12.4 Inelastic Scattering Techniques -- 12.4.1 Extended energy-loss fine structure (EXELFS) -- 12.4.2 X-ray Raman scattering (XRS) -- 12.5 b-Environmental Fine Structure (BEFS) -- 12.6 Combined Techniques -- 12.6.1 General considerations -- 12.6.2 Selected examples -- 12.7 Conclusion -- Acknowledgments -- References -- Supplemental Images -- Part III Applications: From Catalysis via Semiconductors to Industrial Applications.
13 X-Ray Absorption and Emission Spectroscopy for Catalysis.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- X-Ray Absorption and X-Ray Emission Spectroscopy, VOLUME I -- Contents -- List of Contributors -- Foreword -- References -- Part I Introduction: History, XAS, XES, and Their Impact on Science -- 1 Introduction: Historical Perspective on XAS -- 1.1 Historical Overview of 100 Years of X-Ray Absorption: A Focus on the Pioneering 1913−1971 Period -- 1.2 About the Book: A Few Curiosities, Some Statistics, and a Brief Overview -- Acknowledgement -- References -- Part II Experiment and Theory -- 2 From Synchrotrons to FELs: How Photons Are Produced -- Beamline Optics and Beam Characteristics -- 2.1 Photon Emission by Accelerated Charges: From the Classical Case to the Relativistic Limit -- 2.2 Undulators, Wigglers, and Bending Magnets -- 2.2.1 Undulators -- 2.2.2 Wigglers -- 2.2.3 Bending magnets -- 2.2.4 High flux, high brightness -- 2.3 The Time Structure of Synchrotron Radiation -- 2.4 Elements of Beamline Optics -- 2.4.1 Focusing devices -- 2.4.2 Monochromators -- 2.4.3 Detectors -- 2.5 Free Electron Lasers -- 2.5.1 FEL optical amplification -- 2.5.2 Optical amplification in an X-FEL: Details -- 2.5.3 Saturation -- 2.5.4 X-FEL time structure: New opportunities for spectroscopy -- 2.5.5 Time coherence and seeding -- References -- 3 Real-Space Multiple-Scattering Theory of X-Ray Spectra -- 3.1 Introduction -- 3.2 Theory -- 3.2.1 Independent-particle approximation -- 3.2.2 Real-space multiple-scattering theory -- 3.2.3 Many body effects in x-ray spectra -- 3.3 Applications -- 3.3.1 XAS, EXAFS, XANES -- 3.3.2 EELS -- 3.3.3 XES -- 3.3.4 XMCD -- 3.3.5 NRIXS -- 3.3.6 RIXS -- 3.3.7 Compton scattering -- 3.3.8 Optical constants -- 3.4 Conclusion -- References -- 4 Theory of X-Ray Absorption Near Edge Structure -- 4.1 Introduction -- 4.2 The X-Ray Absorption Phenomena -- 4.2.1 Probing material -- 4.2.2 The different spectroscopies.

4.3 X-Ray Matter Interaction -- 4.3.1 Interaction Hamiltonian -- 4.3.2 Absorption cross-section for the transition between two states -- 4.3.3 State description -- 4.3.4 The transition matrix -- 4.4 XANES General Formulation -- 4.4.1 Interaction times and the multi-electronic problem -- 4.4.2 Absorption cross-section main equation -- 4.5 XANES Simulations in the Mono-Electronic Scheme -- 4.5.1 From multi- to mono-electronic -- 4.5.2 The different methods -- 4.5.3 The multiple scattering theory -- 4.6 Multiplet Ligand Field Theory -- 4.6.1 Atomic multiplets -- 4.6.2 The crystal field -- 4.7 Current Theoretical Developments -- 4.8 Tensorial Approaches -- 4.9 Conclusion -- References -- 5 How to Start an XAS Experiment -- 5.1 Introduction -- 5.2 Plan the Experiment -- 5.2.1 Identify the scientific question -- 5.2.2 Can XAS solve the problem? -- 5.2.3 Select the best beamline and measurement mode -- 5.2.4 Writing the proposal -- 5.3 Preparing the Experiment -- 5.3.1 Experimental design -- 5.3.2 Best sample conditions for data acquisition -- 5.3.3 Sample preparation -- 5.4 Performing the Experiment -- 5.4.1 Initial set-up and optimization of signal -- 5.4.2 Data acquisition -- References -- 6 Hard X-Ray Photon-in/Photon-out Spectroscopy: Instrumentation, Theory and Applications -- 6.1 Introduction -- 6.2 History -- 6.3 Basic Theory of XES -- 6.3.1 One- and multi-electron description -- 6.3.2 X-ray Raman scattering spectroscopy -- 6.4 Chemical Sensitivity of X-Ray Emission -- 6.4.1 Core-to-core transitions -- 6.4.2 Valence-to-core transitions -- 6.5 HERFD and RIXS -- 6.6 Experimental X-Ray Emission Spectroscopy -- 6.6.1 Sources for x-ray emission spectroscopy -- 6.6.2 X-ray emission spectrometers -- 6.6.3 Detectors -- 6.7 Conclusion -- References -- 7 QEXAFS: Techniques and Scientific Applications for Time-Resolved XAS -- 7.1 Introduction.

7.2 History and Basics of QEXAFS -- 7.3 Monochromators and Beamlines for QEXAFS -- 7.3.1 QEXAFS with conventional monochromators -- 7.3.2 Piezo-QEXAFS for the millisecond time range -- 7.3.3 Dedicated oscillating monochromators for QEXAFS -- 7.4 Detectors and Readout Systems -- 7.4.1 Requirements for detectors -- 7.4.2 Gridded ionization chambers -- 7.4.3 Data acquisition -- 7.4.4 Angular encoder -- 7.5 Applications of QEXAFS in Chemistry -- 7.5.1 Following the fate of metal contaminants at the mineral-water interface -- 7.5.2 Identifying the catalytic active sites in gas phase reactions -- 7.5.3 Identifying the catalytic active site in liquid phase reactions -- 7.5.4 Synthesis of nanoparticles -- 7.5.5 Identification of reaction intermediates: Modulation excitation XAS -- 7.6 Conclusion and Future Perspectives -- Acknowledgements -- References -- 8 Time-Resolved XAS Using an Energy Dispersive Spectrometer: Techniques and Applications -- 8.1 Introduction -- 8.2 Energy Dispersive X-Ray Absorption Spectroscopy -- 8.2.1 Historical development of EDXAS and overview of existing facilities -- 8.2.2 Principles: Source, optics, detection -- 8.2.3 Dispersive versus scanning spectrometer for time-resolved experiments -- 8.2.4 Description of the EDXAS beamline at ESRF -- 8.3 From the Minute Down to the Ms: Filming a Chemical Reaction in situ -- 8.3.1 Technical aspects -- 8.3.2 First stages of nanoparticle formation -- 8.3.3 Working for cleaner cars: Automotive exhaust catalyst -- 8.3.4 Reaction mechanisms and intermediates -- 8.3.5 High temperature oxidation of metallic iron -- 8.4 Down to the µs Regime: Matter under Extreme Conditions -- 8.4.1 Technical aspects -- 8.4.2 Melts at extreme pressure and temperature -- 8.4.3 Spin transitions at high magnetic field -- 8.4.4 Fast ohmic ramp excitation towards the warm dense matter regime.

8.5 Playing with a 100 ps Single Bunch -- 8.5.1 Technical aspects -- 8.5.2 Detection and characterization of photo-excited states in Cu+ complexes -- 8.5.3 Opportunities for investigating laser-shocked matter -- 8.5.4 Non-synchrotron EDXAS -- 8.6 Conclusion -- References -- 9 X-Ray Transient Absorption Spectroscopy -- 9.1 Introduction -- 9.2 Pump-Probe Spectroscopy -- 9.2.1 Background -- 9.2.2 The basic set-up -- 9.3 Experimental Considerations -- 9.3.1 XTA at a synchrotron source -- 9.3.2 XTA at x-ray free electron laser sources -- 9.4 Transient Structural Information Investigated by XTA -- 9.4.1 Metal center oxidation state -- 9.4.2 Electron configuration and orbital energies of x-ray absorbing atoms -- 9.4.3 Transient coordination geometry of the metal center -- 9.5 X-Ray Pump-Probe Absorption Spectroscopy: Examples -- 9.5.1 Excited state dynamics of transition metal complexes (TMCs) -- 9.5.2 Interfacial charge transfer in hybrid systems -- 9.5.3 XTA studies of metal center active site structures in metalloproteins -- 9.5.4 XTA using the x-ray free electron lasers -- 9.5.5 Other XTA application examples -- 9.6 Perspective of Pump-Probe X-Ray Spectroscopy -- Acknowledgments -- References -- 10 Space-Resolved XAFS, Instrumentation and Applications -- 10.1 Space-Resolving Techniques for XAFS -- 10.2 Beam-Focusing Instrumentation for Microbeam Production -- 10.2.1 Total reflection mirror systems -- 10.2.2 Fresnel zone plate optics for x-ray microbeam -- 10.2.3 General issues of beam-focusing optics -- 10.2.4 Requirements on beam stability in microbeam XAFS experiments -- 10.3 Examples of Beam-Focusing Instrumentation -- 10.3.1 The total-reflection mirror system -- 10.3.2 Fresnel zone plate system -- 10.4 Examples of Applications of the Microbeam-XAFS Technique to Biology and Environmental Science -- 10.4.1 Speciation of heavy metals in willow.

10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit -- 10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics -- 10.4.4 Micro-XAFS studies of plutonium sorbed on tuff -- 10.4.5 Micro-XANES analysis of vanadium accumulation in an ascidian blood cell -- 10.5 Conclusion and Outlook -- References -- 11 Quantitative EXAFS Analysis -- 11.1 A brief history of EXAFS theory -- 11.1.1 The n-body decomposition in GNXAS -- 11.1.2 The exact curved wave theory in EXCURVE -- 11.1.3 The path expansion in FEFF -- 11.2 Theoretical calculation of EXAFS scattering factors -- 11.2.1 The pathfinder -- 11.2.2 The fitting metric -- 11.2.3 Constraints on parameters of the fit -- 11.2.4 Fitting statistics -- 11.2.5 Extending the evaluation of -- 11.2.6 Other analytic methods -- 11.3 Practical examples of EXAFS analysis -- 11.3.1 Geometric constraints on bond lengths -- 11.3.2 Constraints on the coordination environment -- 11.3.3 Constraints and multiple data set analysis -- 11.4 Conclusion -- References -- 12 XAS Spectroscopy: Related Techniques and Combination with Other Spectroscopic and Scattering Methods -- 12.1 Introduction -- 12.2 Atomic Pair Distribution Analysis of Total Scattering Data -- 12.2.1 Theoretical description -- 12.2.2 Examples of PDF analysis -- 12.3 Diffraction Anomalous Fine Structure (DAFS) -- 12.3.1 Theoretical description -- 12.3.2 Examples of DAFS -- 12.4 Inelastic Scattering Techniques -- 12.4.1 Extended energy-loss fine structure (EXELFS) -- 12.4.2 X-ray Raman scattering (XRS) -- 12.5 b-Environmental Fine Structure (BEFS) -- 12.6 Combined Techniques -- 12.6.1 General considerations -- 12.6.2 Selected examples -- 12.7 Conclusion -- Acknowledgments -- References -- Supplemental Images -- Part III Applications: From Catalysis via Semiconductors to Industrial Applications.

13 X-Ray Absorption and Emission Spectroscopy for Catalysis.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.