ORPP logo
Image from Google Jackets

Non-Volatile Memories.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2014Copyright date: ©2014Edition: 1st edDescription: 1 online resource (305 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118790281
Subject(s): Genre/Form: Additional physical formats: Print version:: Non-Volatile MemoriesDDC classification:
  • 621.397
LOC classification:
  • TK7895.M4 -- L33 2014eb
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Acknowledgments -- Preface -- PART 1: Information Storage and the State of the Art of Electronic Memories -- 1: General Issues Related to Data Storage and Analysis Classification of Memories and Related Perspectives -- 1.1. Issues arising from the flow of digital information -- 1.2. Current electronic memories and their classification -- 1.3. Memories of the future -- 2: State of the Art of DRAM, SRAM, Flash, HDD and MRAM Electronic Memories -- 2.1. DRAM volatile memories -- 2.1.1. The operating principle of a MOSFET (metal oxide semiconductor field effect transistor) -- 2.1.2. Operating characteristics of DRAM memories -- 2.2. SRAM memories -- 2.3. Non-volatile memories related to CMOS technology -- 2.3.1. Operational characteristics of a floating gate MOSFET -- 2.3.1.1. How to charge and discharge the floating gate? -- 2.3.1.2. Physical problems related to the storage of electrical charges and their impact on the operation of a floating gate memory -- 2.3.1.2.1. Charge retention -- 2.3.1.2.2. Problems related to writing and electron injection -- 2.3.1.3. Multilevel cells -- 2.3.1.4. The quality of dielectrics: one of the reasons behind the limitation of floating gate memory performances -- 2.3.1.5. The "Achille's heel" of floating gate memories -- 2.3.2. Flash memories -- 2.3.2.1. NOR and NAND Flash memories -- 2.3.2.2. General organization of NAND Flash memories -- 2.3.2.3. Perspectives for Flash memories -- 2.4. Non-volatile magnetic memories (hard disk drives - HDDs and MRAMs) -- 2.4.1. The discovery of giant magneto resistance at the origin of the spread of hard disk drives -- 2.4.1.1. GMR characteristics -- 2.4.2. Spin valves -- 2.4.3. Magnetic tunnel junctions -- 2.4.4. Operational characteristics of a hard disk drive (HDD) -- 2.4.5. Characteristics of a magnetic random access memory (MRAM).
2.5. Conclusion -- 3: Evolution of SSD Toward FeRAM, FeFET, CTM and STT-RAM Memories -- 3.1. Evolution of DRAMs toward ferroelectric FeRAMs -- 3.1.1. Characteristics of a ferroelectric material -- 3.1.2. Principle of an FeRAM memory -- 3.1.3. Characteristics of an FeFET memory -- 3.1.3.1. Retention characteristics -- 3.1.3.2. Ferroelectric materials other than oxides? -- 3.2. The evolution of Flash memories towards charge trap memories (CTM) -- 3.3. The evolution of magnetic memories (MRAM) toward spin torque transfer memories (STT-RAM) -- 3.3.1. Nanomagnetism and experimental implications -- 3.3.2. Characteristics of spin torque transfer -- 3.3.3. Recent evolution with use of perpendicular magnetic anisotropic materials -- 3.4. Conclusions -- PART 2: The Emergence of New Concepts: The Inorganic NEMS, PCRAM, ReRAM and Organic Memories -- 4: Volatile and Non-volatile Memories Based on NEMS -- 4.1. Nanoelectromechanical switches with two electrodes -- 4.1.1. NEMS with cantilevers -- 4.1.1.1. Operation and memory effect of an NEMS with a cantilever -- 4.1.1.2. Description of the elaboration technique -- 4.1.2. NEMS with suspended bridge -- 4.1.3. Crossed carbon nanotube networks -- 4.2. NEMS switches with three electrodes -- 4.2.1. Cantilever switch elaborated by lithographic techniques -- 4.2.2. Nanoswitches with carbon nanotubes -- 4.2.2.1. NEMS memory with a carbon nanotube cantilever -- 4.2.2.2. NEMS memories with "vertical" carbon nanotubes (CNTs) -- 4.2.3. NEMS-FET hybrid memories with a mobile floating gate or mobile cantilever -- 4.2.3.1. Mobile floating gate memory -- 4.2.3.2. MEMS memory with a mobile cantilever and a fixed carbon nanotube -- 4.3. Conclusion -- 5: Non-volatile Phase-Change Electronic Memories (PCRAM) -- 5.1. Operation of an electronic phase-change memory -- 5.1.1. Composition and functioning of a GST PCRAM.
5.1.2. The antinomy between the high resistance of the amorphous state and rapid heating -- 5.2. Comparison of physicochemical characteristics of a few phase-change materials -- 5.3. Key factors for optimized performances of PCM memories -- 5.3.1. Influence of cell geometry on the current Im needed for crystal melting -- 5.3.2. Optimization of phase-change alloy composition to improve performance -- 5.3.2.1. Effect of variations in GST composition (Ge, Sb and Te) -- 5.3.2.2. Doping of GST with elements other than Ge, Sb and Te -- 5.3.3. Influence of nanostructuration of the phase-change material -- 5.3.3.1. Alternating GeTe and Sb2Te3 layers -- 5.3.3.2. Interpretation of structuring effect of GST layer on switching speeds -- 5.3.4. Recent techniques for improvement of amorphization and crystallization rates of phase-change materials -- 5.3.4.1. New procedures for improving crystallization rates without modifying retention properties -- 5.3.4.2. Amorphization without melting induced by electric pulses of a few hundred picoseconds -- 5.3.5. Problems related to interconnection of PCRAM cells in a 3D crossbar-type architecture -- 5.4. Conclusion -- 6: Resistive Memory Systems (RRAM) -- 6.1. Main characteristics of resistive memories -- 6.1.1. Unipolar system -- 6.1.2. Bipolar system -- 6.2. Electrochemical metallization memories -- 6.2.1. Atomic switches -- 6.2.2. Metallization memories with an insulator or a semiconductor -- 6.2.2.1. Cu/SiO2/Pt metallization memory -- 6.2.2.2. Ag/ZnO/Pt memory device -- 6.2.3. Conclusions on metallization memories -- 6.3. Resistive valence change memories (VCM) -- 6.3.1. The first work on resistive memories -- 6.3.2. Resistive valence change memories after the 2000s -- 6.3.3. A perovskite resistive memory (SrZrO3) with better performance than Flash memories -- 6.3.4. Electroforming and resistive switching.
6.3.4.1. Electroforming process -- 6.3.4.2. Resistive switching mechanisms -- 6.3.5. Hafnium oxide for universal resistive memories? -- 6.4. Conclusion -- 7: Organic and Non-volatile Electronic Memories -- 7.1. Flash-type organic memories -- 7.1.1. Flexible FG-OFET device with metal floating gate -- 7.1.1.1. Floating-gate OFET fabrication and electric specifications -- 7.1.1.2. Elaboration of a pressure sensor -- 7.1.2. Flexible organic FG-OFET entirely elaborated by spin coating and inkjet printing -- 7.1.2.1. Elaboration of an all-solution processable FG-OFET -- 7.1.2.2. Electric characteristics of an all-solution-processed FG-OFET -- 7.1.3. Flexible OFETs with charge-trap gate dielectrics -- 7.1.3.1. Electric characteristics of OFETs based on polymer electrets -- 7.1.3.2. Polymer electret-based OFETs printed on paper -- 7.1.4. OFETs with conductive nanoparticles encapsulated in the gate dielectric -- 7.1.4.1. OFET with gold NPs inserted in the gate dielectric -- 7.1.4.2. Operating characteristics -- 7.1.5. Redox dielectric OFETs -- 7.1.5.1. Making the redox transistor -- 7.1.5.2. Operation of the transistor -- 7.2. Resistive organic memories with two contacts -- 7.2.1. Organic memories based on electrochemical metallization -- 7.2.1.1. M/I/M' devices with a polymer electrolyte -- 7.2.1.2. M/I/M' devices with a conducting polymer -- 7.2.2. Resistive charge-trap organic memories -- 7.2.2.1. Resistive [M/I-m-I/M'] device with "m" as electric charge-trap intermediate layer -- 7.2.2.2. Resistive component M/I/M' with gold metallic NPs -- 7.3. Molecular memories -- 7.4. Conclusion -- Conclusion -- Bibliography -- Chapter 1 -- Chapter 2 -- Chapter 3 -- Chapter 4 -- Chapter 5 -- Chapter 6 -- Chapter 7 -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Acknowledgments -- Preface -- PART 1: Information Storage and the State of the Art of Electronic Memories -- 1: General Issues Related to Data Storage and Analysis Classification of Memories and Related Perspectives -- 1.1. Issues arising from the flow of digital information -- 1.2. Current electronic memories and their classification -- 1.3. Memories of the future -- 2: State of the Art of DRAM, SRAM, Flash, HDD and MRAM Electronic Memories -- 2.1. DRAM volatile memories -- 2.1.1. The operating principle of a MOSFET (metal oxide semiconductor field effect transistor) -- 2.1.2. Operating characteristics of DRAM memories -- 2.2. SRAM memories -- 2.3. Non-volatile memories related to CMOS technology -- 2.3.1. Operational characteristics of a floating gate MOSFET -- 2.3.1.1. How to charge and discharge the floating gate? -- 2.3.1.2. Physical problems related to the storage of electrical charges and their impact on the operation of a floating gate memory -- 2.3.1.2.1. Charge retention -- 2.3.1.2.2. Problems related to writing and electron injection -- 2.3.1.3. Multilevel cells -- 2.3.1.4. The quality of dielectrics: one of the reasons behind the limitation of floating gate memory performances -- 2.3.1.5. The "Achille's heel" of floating gate memories -- 2.3.2. Flash memories -- 2.3.2.1. NOR and NAND Flash memories -- 2.3.2.2. General organization of NAND Flash memories -- 2.3.2.3. Perspectives for Flash memories -- 2.4. Non-volatile magnetic memories (hard disk drives - HDDs and MRAMs) -- 2.4.1. The discovery of giant magneto resistance at the origin of the spread of hard disk drives -- 2.4.1.1. GMR characteristics -- 2.4.2. Spin valves -- 2.4.3. Magnetic tunnel junctions -- 2.4.4. Operational characteristics of a hard disk drive (HDD) -- 2.4.5. Characteristics of a magnetic random access memory (MRAM).

2.5. Conclusion -- 3: Evolution of SSD Toward FeRAM, FeFET, CTM and STT-RAM Memories -- 3.1. Evolution of DRAMs toward ferroelectric FeRAMs -- 3.1.1. Characteristics of a ferroelectric material -- 3.1.2. Principle of an FeRAM memory -- 3.1.3. Characteristics of an FeFET memory -- 3.1.3.1. Retention characteristics -- 3.1.3.2. Ferroelectric materials other than oxides? -- 3.2. The evolution of Flash memories towards charge trap memories (CTM) -- 3.3. The evolution of magnetic memories (MRAM) toward spin torque transfer memories (STT-RAM) -- 3.3.1. Nanomagnetism and experimental implications -- 3.3.2. Characteristics of spin torque transfer -- 3.3.3. Recent evolution with use of perpendicular magnetic anisotropic materials -- 3.4. Conclusions -- PART 2: The Emergence of New Concepts: The Inorganic NEMS, PCRAM, ReRAM and Organic Memories -- 4: Volatile and Non-volatile Memories Based on NEMS -- 4.1. Nanoelectromechanical switches with two electrodes -- 4.1.1. NEMS with cantilevers -- 4.1.1.1. Operation and memory effect of an NEMS with a cantilever -- 4.1.1.2. Description of the elaboration technique -- 4.1.2. NEMS with suspended bridge -- 4.1.3. Crossed carbon nanotube networks -- 4.2. NEMS switches with three electrodes -- 4.2.1. Cantilever switch elaborated by lithographic techniques -- 4.2.2. Nanoswitches with carbon nanotubes -- 4.2.2.1. NEMS memory with a carbon nanotube cantilever -- 4.2.2.2. NEMS memories with "vertical" carbon nanotubes (CNTs) -- 4.2.3. NEMS-FET hybrid memories with a mobile floating gate or mobile cantilever -- 4.2.3.1. Mobile floating gate memory -- 4.2.3.2. MEMS memory with a mobile cantilever and a fixed carbon nanotube -- 4.3. Conclusion -- 5: Non-volatile Phase-Change Electronic Memories (PCRAM) -- 5.1. Operation of an electronic phase-change memory -- 5.1.1. Composition and functioning of a GST PCRAM.

5.1.2. The antinomy between the high resistance of the amorphous state and rapid heating -- 5.2. Comparison of physicochemical characteristics of a few phase-change materials -- 5.3. Key factors for optimized performances of PCM memories -- 5.3.1. Influence of cell geometry on the current Im needed for crystal melting -- 5.3.2. Optimization of phase-change alloy composition to improve performance -- 5.3.2.1. Effect of variations in GST composition (Ge, Sb and Te) -- 5.3.2.2. Doping of GST with elements other than Ge, Sb and Te -- 5.3.3. Influence of nanostructuration of the phase-change material -- 5.3.3.1. Alternating GeTe and Sb2Te3 layers -- 5.3.3.2. Interpretation of structuring effect of GST layer on switching speeds -- 5.3.4. Recent techniques for improvement of amorphization and crystallization rates of phase-change materials -- 5.3.4.1. New procedures for improving crystallization rates without modifying retention properties -- 5.3.4.2. Amorphization without melting induced by electric pulses of a few hundred picoseconds -- 5.3.5. Problems related to interconnection of PCRAM cells in a 3D crossbar-type architecture -- 5.4. Conclusion -- 6: Resistive Memory Systems (RRAM) -- 6.1. Main characteristics of resistive memories -- 6.1.1. Unipolar system -- 6.1.2. Bipolar system -- 6.2. Electrochemical metallization memories -- 6.2.1. Atomic switches -- 6.2.2. Metallization memories with an insulator or a semiconductor -- 6.2.2.1. Cu/SiO2/Pt metallization memory -- 6.2.2.2. Ag/ZnO/Pt memory device -- 6.2.3. Conclusions on metallization memories -- 6.3. Resistive valence change memories (VCM) -- 6.3.1. The first work on resistive memories -- 6.3.2. Resistive valence change memories after the 2000s -- 6.3.3. A perovskite resistive memory (SrZrO3) with better performance than Flash memories -- 6.3.4. Electroforming and resistive switching.

6.3.4.1. Electroforming process -- 6.3.4.2. Resistive switching mechanisms -- 6.3.5. Hafnium oxide for universal resistive memories? -- 6.4. Conclusion -- 7: Organic and Non-volatile Electronic Memories -- 7.1. Flash-type organic memories -- 7.1.1. Flexible FG-OFET device with metal floating gate -- 7.1.1.1. Floating-gate OFET fabrication and electric specifications -- 7.1.1.2. Elaboration of a pressure sensor -- 7.1.2. Flexible organic FG-OFET entirely elaborated by spin coating and inkjet printing -- 7.1.2.1. Elaboration of an all-solution processable FG-OFET -- 7.1.2.2. Electric characteristics of an all-solution-processed FG-OFET -- 7.1.3. Flexible OFETs with charge-trap gate dielectrics -- 7.1.3.1. Electric characteristics of OFETs based on polymer electrets -- 7.1.3.2. Polymer electret-based OFETs printed on paper -- 7.1.4. OFETs with conductive nanoparticles encapsulated in the gate dielectric -- 7.1.4.1. OFET with gold NPs inserted in the gate dielectric -- 7.1.4.2. Operating characteristics -- 7.1.5. Redox dielectric OFETs -- 7.1.5.1. Making the redox transistor -- 7.1.5.2. Operation of the transistor -- 7.2. Resistive organic memories with two contacts -- 7.2.1. Organic memories based on electrochemical metallization -- 7.2.1.1. M/I/M' devices with a polymer electrolyte -- 7.2.1.2. M/I/M' devices with a conducting polymer -- 7.2.2. Resistive charge-trap organic memories -- 7.2.2.1. Resistive [M/I-m-I/M'] device with "m" as electric charge-trap intermediate layer -- 7.2.2.2. Resistive component M/I/M' with gold metallic NPs -- 7.3. Molecular memories -- 7.4. Conclusion -- Conclusion -- Bibliography -- Chapter 1 -- Chapter 2 -- Chapter 3 -- Chapter 4 -- Chapter 5 -- Chapter 6 -- Chapter 7 -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.