ORPP logo
Image from Google Jackets

Hermitian Two Matrix Model with an Even Quartic Potential.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 2012Copyright date: ©2011Edition: 1st edDescription: 1 online resource (118 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780821887561
Subject(s): Genre/Form: Additional physical formats: Print version:: Hermitian Two Matrix Model with an Even Quartic PotentialDDC classification:
  • 512.7/4
LOC classification:
  • QA379 -- .D858 2011eb
Online resources:
Contents:
Intro -- Contents -- Abstract -- Chapter 1. Introduction and Statement of Results -- 1.1. Hermitian two matrix model -- 1.2. Background -- 1.3. Vector equilibrium problem -- 1.4. Solution of vector equilibrium problem -- 1.5. Classification into cases -- 1.6. Limiting mean eigenvalue distribution -- 1.7. About the proof of Theorem 1.4 -- 1.8. Singular cases -- Chapter 2. Preliminaries and the Proof of Lemma 1.2 -- 2.1. Saddle point equation and functions sj -- 2.2. Values at the saddles and functions j -- 2.3. Large z asymptotics -- 2.4. Two special integrals -- 2.5. Proof of Lemma 1.2 -- Chapter 3. Proof of Theorem 1.1 -- 3.1. Results from potential theory -- 3.2. Equilibrium problem for 3 -- 3.3. Equilibrium problem for 1 -- 3.4. Equilibrium problem for 2 -- 3.5. Uniqueness of the minimizer -- 3.6. Existence of the minimizer -- 3.7. Proof of Theorem 1.1 -- Chapter 4. A Riemann Surface -- 4.1. The g-functions -- 4.2. Riemann surface R and -functions -- 4.3. Properties of the functions -- 4.4. The functions -- Chapter 5. Pearcey Integrals and the First Transformation -- 5.1. Definitions -- 5.2. Large z asymptotics -- 5.3. First transformation: Y X -- 5.4. RH problem for X -- Chapter 6. Second Transformation X U -- 6.1. Definition of second transformation -- 6.2. Asymptotic behavior of U -- 6.3. Jump matrices for U -- 6.4. RH problem for U -- Chapter 7. Opening of Lenses -- 7.1. Third transformation U T -- 7.2. RH problem for T -- 7.3. Jump matrices for T -- 7.4. Fourth transformation T S -- 7.5. RH problem for S -- 7.6. Behavior of jumps as n -- Chapter 8. Global Parametrix -- 8.1. Statement of RH problem -- 8.2. Riemann surface as an M-curve -- 8.3. Canonical homology basis -- 8.4. Meromorphic differentials -- 8.5. Definition and properties of functions uj -- 8.6. Definition and properties of functions vj -- 8.7. The first row of M.
8.8. The other rows of M -- Chapter 9. Local Parametrices and Final Transformation -- 9.1. Local parametrices -- 9.2. Final transformation -- 9.3. Proof of Theorem 1.4 -- Bibliography -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Abstract -- Chapter 1. Introduction and Statement of Results -- 1.1. Hermitian two matrix model -- 1.2. Background -- 1.3. Vector equilibrium problem -- 1.4. Solution of vector equilibrium problem -- 1.5. Classification into cases -- 1.6. Limiting mean eigenvalue distribution -- 1.7. About the proof of Theorem 1.4 -- 1.8. Singular cases -- Chapter 2. Preliminaries and the Proof of Lemma 1.2 -- 2.1. Saddle point equation and functions sj -- 2.2. Values at the saddles and functions j -- 2.3. Large z asymptotics -- 2.4. Two special integrals -- 2.5. Proof of Lemma 1.2 -- Chapter 3. Proof of Theorem 1.1 -- 3.1. Results from potential theory -- 3.2. Equilibrium problem for 3 -- 3.3. Equilibrium problem for 1 -- 3.4. Equilibrium problem for 2 -- 3.5. Uniqueness of the minimizer -- 3.6. Existence of the minimizer -- 3.7. Proof of Theorem 1.1 -- Chapter 4. A Riemann Surface -- 4.1. The g-functions -- 4.2. Riemann surface R and -functions -- 4.3. Properties of the functions -- 4.4. The functions -- Chapter 5. Pearcey Integrals and the First Transformation -- 5.1. Definitions -- 5.2. Large z asymptotics -- 5.3. First transformation: Y X -- 5.4. RH problem for X -- Chapter 6. Second Transformation X U -- 6.1. Definition of second transformation -- 6.2. Asymptotic behavior of U -- 6.3. Jump matrices for U -- 6.4. RH problem for U -- Chapter 7. Opening of Lenses -- 7.1. Third transformation U T -- 7.2. RH problem for T -- 7.3. Jump matrices for T -- 7.4. Fourth transformation T S -- 7.5. RH problem for S -- 7.6. Behavior of jumps as n -- Chapter 8. Global Parametrix -- 8.1. Statement of RH problem -- 8.2. Riemann surface as an M-curve -- 8.3. Canonical homology basis -- 8.4. Meromorphic differentials -- 8.5. Definition and properties of functions uj -- 8.6. Definition and properties of functions vj -- 8.7. The first row of M.

8.8. The other rows of M -- Chapter 9. Local Parametrices and Final Transformation -- 9.1. Local parametrices -- 9.2. Final transformation -- 9.3. Proof of Theorem 1.4 -- Bibliography -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.