ORPP logo
Image from Google Jackets

Sustainable Steel Buildings : A Practical Guide for Structures and Envelopes.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2016Copyright date: ©2016Edition: 1st edDescription: 1 online resource (383 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118740798
Subject(s): Genre/Form: Additional physical formats: Print version:: Sustainable Steel BuildingsDDC classification:
  • 693.71
LOC classification:
  • TH1611
Online resources:
Contents:
Intro -- Title Page -- Copyright Page -- Contents -- List of contributors -- Preface -- Chapter 1 What does 'sustainable construction' mean? An overview -- 1.1 Introduction -- 1.1.1 The influence of the building sector -- 1.1.2 Can we afford sustainability? -- 1.1.3 How can we achieve sustainability in the building sector? -- 1.2 Aims of Sustainable Construction -- 1.2.1 Ecological aims -- 1.2.2 Social aims -- 1.2.3 Economic aims -- References -- Chapter 2 Legal background and codes in Europe -- 2.1 Normative Background -- 2.2 Comments on EN 15804 and EN 15978 -- 2.2.1 Modular life-cycle stages -- 2.2.2 Comparability of EPDs for construction products -- 2.2.3 Functional equivalent -- 2.2.4 Scenarios at product or building level -- 2.2.5 Reuse and recycling in module D -- 2.2.6 Aggregation of the information modules -- 2.3 Legal Framework -- 2.3.1 EU waste framework directive and waste management acts in European countries: product responsibility -- 2.3.2 EU construction products regulation -- 2.3.3 EU building directive and energy saving ordinance -- 2.3.4 Focus increasingly on construction products -- 2.3.5 EU industrial emissions directive -- References -- Chapter 3 Basic principles of sustainability assessment -- 3.1 The Life-Cycle Concept -- 3.1.1 What is the meaning of the life-cycle concept? -- 3.1.2 Life-cycle phases of a building -- 3.2 Life-Cycle Planning -- 3.2.1 Building Information Modeling in steel construction -- 3.2.2 Integrated and life-cycle-oriented planning -- 3.3 Life-Cycle Assessment and Functional Unit -- 3.3.1 Environmental impact categories -- 3.4 Life-Cycle Costing -- 3.4.1 Life-cycle costing - cost application including cost planning -- 3.4.2 Net present value method -- 3.4.3 Life-cycle cost analysis -- 3.5 Energy Efficiency -- 3.6 Environmental Product Declarations.
3.6.1 Institute Construction and Environment (IBU) - Program Operator for EPDs in Germany -- 3.6.2 The ECO Platform -- 3.7 Background Databases -- 3.8 European Open LCA Data Network -- 3.8.1 ÖKOBAUDAT -- 3.8.2 eLCA, an LCA tool for buildings -- 3.8.3 LCA - a European approach -- 3.9 Environmental Data for Steel Construction Products -- 3.9.1 The recycling potential concept -- 3.9.2 EPD for structural steel -- 3.9.3 EPD for hot-dip galvanized structural steel -- 3.9.4 EPDs for profiled sheets and sandwich panels -- 3.10 KBOB-recommendation - LCA Database from Switzerland -- 3.10.1 KBOB-recommendation as a basis for planning tools -- 3.10.2 Environmental impact assessment within the KBOB-recommendation -- 3.10.3 Environmental impacts of hot-rolled steel products -- 3.10.4 Example using data from the KBOB-recommendation -- References -- Chapter 4 Sustainable steel construction -- 4.1 ENVIRONMENTAL ASPECTS OF STEEL PRODUCTION -- 4.2 PLANNING AND CONSTRUCTING -- 4.2.1 Sustainability aspects of tender and contracting -- 4.3 SUSTAINABLE BUILDING QUALITY -- 4.3.1 Space efficiency -- 4.3.2 Flexibility and building conversion -- 4.3.3 Design for deconstruction, reuse and recycling -- 4.4 MULTISTOREY BUILDINGS -- 4.4.1 Introduction -- 4.4.2 Building forms -- 4.4.3 Floor plan design -- 4.4.4 Building height and height between floors -- 4.4.5 Flexibility and variability -- 4.4.6 Demands placed on the structural system -- 4.4.7 Floor systems -- 4.4.8 Columns -- 4.4.9 Innovative joint systems -- 4.5 HIGH STRENGTH STEEL -- 4.5.1 Metallurgical background -- 4.5.2 Designing in accordance with Eurocodes -- 4.6 BATCH HOT-DIP GALVANIZING -- 4.6.1 Introduction -- 4.6.2 The galvanizing process -- 4.6.3 Batch galvanized coatings -- 4.6.4 Sustainability -- 4.6.5 Example: 72 years young - the Lydlinch Bridge -- 4.7 UPE CHANNELS.
4.8 Optimisation of Material Consumption in Steel Columns -- 4.9 COMPOSITE BEAMS -- 4.9.1 Composite beams with moderate high strength materials -- 4.9.2 Examples for high strength composite beams -- 4.9.3 Economic application of composite beams -- 4.10 FIRE-PROTECTIVE COATINGS IN STEEL CONSTRUCTION -- 4.10.1 Possible ways of designing the fire protection system -- 4.10.2 Fire protection of steel using intumescent coatings -- 4.10.3 The structure of fire-protective coating systems -- 4.10.4 Sustainability of fire-protection coating systems -- 4.11 BUILDING ENVELOPES IN STEEL -- 4.11.1 Energy-efficient building envelope design -- 4.11.2 Thermal performance and air-tightness of sandwich constructions -- 4.11.3 Effective thermal insulation by application of steel cassette profiles -- 4.12 FLOOR SYSTEMS -- 4.12.1 Steel as key component for multifunctional flooring systems -- 4.12.2 Slimline floor system -- 4.12.3 Profiled composite decks for thermal inertia -- 4.12.4 Thermal activation of steel floor systems -- 4.12.5 Steel decks supporting zero energy concepts -- 4.12.6 Optimisation of multistorey buildings with beam-slab systems -- 4.13 SUSTAINABILITY ANALYSES AND ASSESSMENTS OF STEEL BRIDGES -- 4.13.1 State of the art -- 4.13.2 Methods for bridge analyses -- 4.13.3 External effects and external costs -- 4.13.4 Life-cycle assessment -- 4.13.5 Uncertainty -- 4.14 STEEL CONSTRUCTION FOR RENEWABLE ENERGY -- 4.14.1 Sustainability assessment concept -- 4.14.2 Sustainability characteristics -- REFERENCES -- Chapter 5 Sustainability certification labels for buildings -- 5.1 Major Certification Schemes -- 5.1.1 DGNB and BNB -- 5.1.2 LEED -- 5.1.3 BREEAM -- 5.2 Effect of Structural Design in the Certification Schemes -- 5.2.1 Life-cycle assessments and environmental product declarations -- 5.2.2 Risks to the environment and humans.
5.2.3 Costs during the life cycle -- 5.2.4 Flexibility of the building -- 5.2.5 Recycling of construction materials, dismantling and demolition capability -- 5.2.6 Execution of construction work and building site -- References -- Chapter 6 Case studies and life-cycle assessment comparisons -- 6.1 LCA Comparison of Single-Storey Buildings -- 6.1.1 Structural systems -- 6.1.2 LCA information -- 6.1.3 Frame and foundations - structural system -- 6.1.4 Column without foundation - single structural member -- 6.1.5 Girder - single structural member -- 6.1.6 Building envelope -- 6.1.7 Comparison in the operational phase -- 6.1.8 Conclusions for single-storey buildings -- 6.2 LCA Comparison of Low Rise Office Buildings -- 6.2.1 The low rise model building -- 6.2.2 LCA comparison of the structural system -- 6.3 LCA Comparison of Office Buildings -- 6.3.1 LCA information -- 6.3.2 Results of the LCA for the building systems -- 6.3.3 Results of the LCA for a reference building -- 6.4 Material Efficiency -- 6.4.1 Effective application of high strength steels -- 6.5 Sustainable Office Designer -- 6.5.1 Database -- 6.5.2 Example using sustainable office designer -- 6.6 Sustainability Comparison of Highway Bridges -- 6.6.1 Calculation of LCC for highway bridges -- 6.6.2 Calculation of external cost for highway bridges -- 6.6.3 Calculation of LCA for highway bridges -- 6.6.4 Additional indicators -- 6.7 Sustainability of Steel Construction for Renewable Energy -- 6.7.1 Offshore wind energy -- 6.7.2 Digester for biogas power plants -- 6.8 Consideration of Transport and Construction -- 6.8.1 Environmental impacts according to the origin of structural steel products -- 6.8.2 Comparison of expenses for transport and hoisting of large girders -- References -- Index -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Title Page -- Copyright Page -- Contents -- List of contributors -- Preface -- Chapter 1 What does 'sustainable construction' mean? An overview -- 1.1 Introduction -- 1.1.1 The influence of the building sector -- 1.1.2 Can we afford sustainability? -- 1.1.3 How can we achieve sustainability in the building sector? -- 1.2 Aims of Sustainable Construction -- 1.2.1 Ecological aims -- 1.2.2 Social aims -- 1.2.3 Economic aims -- References -- Chapter 2 Legal background and codes in Europe -- 2.1 Normative Background -- 2.2 Comments on EN 15804 and EN 15978 -- 2.2.1 Modular life-cycle stages -- 2.2.2 Comparability of EPDs for construction products -- 2.2.3 Functional equivalent -- 2.2.4 Scenarios at product or building level -- 2.2.5 Reuse and recycling in module D -- 2.2.6 Aggregation of the information modules -- 2.3 Legal Framework -- 2.3.1 EU waste framework directive and waste management acts in European countries: product responsibility -- 2.3.2 EU construction products regulation -- 2.3.3 EU building directive and energy saving ordinance -- 2.3.4 Focus increasingly on construction products -- 2.3.5 EU industrial emissions directive -- References -- Chapter 3 Basic principles of sustainability assessment -- 3.1 The Life-Cycle Concept -- 3.1.1 What is the meaning of the life-cycle concept? -- 3.1.2 Life-cycle phases of a building -- 3.2 Life-Cycle Planning -- 3.2.1 Building Information Modeling in steel construction -- 3.2.2 Integrated and life-cycle-oriented planning -- 3.3 Life-Cycle Assessment and Functional Unit -- 3.3.1 Environmental impact categories -- 3.4 Life-Cycle Costing -- 3.4.1 Life-cycle costing - cost application including cost planning -- 3.4.2 Net present value method -- 3.4.3 Life-cycle cost analysis -- 3.5 Energy Efficiency -- 3.6 Environmental Product Declarations.

3.6.1 Institute Construction and Environment (IBU) - Program Operator for EPDs in Germany -- 3.6.2 The ECO Platform -- 3.7 Background Databases -- 3.8 European Open LCA Data Network -- 3.8.1 ÖKOBAUDAT -- 3.8.2 eLCA, an LCA tool for buildings -- 3.8.3 LCA - a European approach -- 3.9 Environmental Data for Steel Construction Products -- 3.9.1 The recycling potential concept -- 3.9.2 EPD for structural steel -- 3.9.3 EPD for hot-dip galvanized structural steel -- 3.9.4 EPDs for profiled sheets and sandwich panels -- 3.10 KBOB-recommendation - LCA Database from Switzerland -- 3.10.1 KBOB-recommendation as a basis for planning tools -- 3.10.2 Environmental impact assessment within the KBOB-recommendation -- 3.10.3 Environmental impacts of hot-rolled steel products -- 3.10.4 Example using data from the KBOB-recommendation -- References -- Chapter 4 Sustainable steel construction -- 4.1 ENVIRONMENTAL ASPECTS OF STEEL PRODUCTION -- 4.2 PLANNING AND CONSTRUCTING -- 4.2.1 Sustainability aspects of tender and contracting -- 4.3 SUSTAINABLE BUILDING QUALITY -- 4.3.1 Space efficiency -- 4.3.2 Flexibility and building conversion -- 4.3.3 Design for deconstruction, reuse and recycling -- 4.4 MULTISTOREY BUILDINGS -- 4.4.1 Introduction -- 4.4.2 Building forms -- 4.4.3 Floor plan design -- 4.4.4 Building height and height between floors -- 4.4.5 Flexibility and variability -- 4.4.6 Demands placed on the structural system -- 4.4.7 Floor systems -- 4.4.8 Columns -- 4.4.9 Innovative joint systems -- 4.5 HIGH STRENGTH STEEL -- 4.5.1 Metallurgical background -- 4.5.2 Designing in accordance with Eurocodes -- 4.6 BATCH HOT-DIP GALVANIZING -- 4.6.1 Introduction -- 4.6.2 The galvanizing process -- 4.6.3 Batch galvanized coatings -- 4.6.4 Sustainability -- 4.6.5 Example: 72 years young - the Lydlinch Bridge -- 4.7 UPE CHANNELS.

4.8 Optimisation of Material Consumption in Steel Columns -- 4.9 COMPOSITE BEAMS -- 4.9.1 Composite beams with moderate high strength materials -- 4.9.2 Examples for high strength composite beams -- 4.9.3 Economic application of composite beams -- 4.10 FIRE-PROTECTIVE COATINGS IN STEEL CONSTRUCTION -- 4.10.1 Possible ways of designing the fire protection system -- 4.10.2 Fire protection of steel using intumescent coatings -- 4.10.3 The structure of fire-protective coating systems -- 4.10.4 Sustainability of fire-protection coating systems -- 4.11 BUILDING ENVELOPES IN STEEL -- 4.11.1 Energy-efficient building envelope design -- 4.11.2 Thermal performance and air-tightness of sandwich constructions -- 4.11.3 Effective thermal insulation by application of steel cassette profiles -- 4.12 FLOOR SYSTEMS -- 4.12.1 Steel as key component for multifunctional flooring systems -- 4.12.2 Slimline floor system -- 4.12.3 Profiled composite decks for thermal inertia -- 4.12.4 Thermal activation of steel floor systems -- 4.12.5 Steel decks supporting zero energy concepts -- 4.12.6 Optimisation of multistorey buildings with beam-slab systems -- 4.13 SUSTAINABILITY ANALYSES AND ASSESSMENTS OF STEEL BRIDGES -- 4.13.1 State of the art -- 4.13.2 Methods for bridge analyses -- 4.13.3 External effects and external costs -- 4.13.4 Life-cycle assessment -- 4.13.5 Uncertainty -- 4.14 STEEL CONSTRUCTION FOR RENEWABLE ENERGY -- 4.14.1 Sustainability assessment concept -- 4.14.2 Sustainability characteristics -- REFERENCES -- Chapter 5 Sustainability certification labels for buildings -- 5.1 Major Certification Schemes -- 5.1.1 DGNB and BNB -- 5.1.2 LEED -- 5.1.3 BREEAM -- 5.2 Effect of Structural Design in the Certification Schemes -- 5.2.1 Life-cycle assessments and environmental product declarations -- 5.2.2 Risks to the environment and humans.

5.2.3 Costs during the life cycle -- 5.2.4 Flexibility of the building -- 5.2.5 Recycling of construction materials, dismantling and demolition capability -- 5.2.6 Execution of construction work and building site -- References -- Chapter 6 Case studies and life-cycle assessment comparisons -- 6.1 LCA Comparison of Single-Storey Buildings -- 6.1.1 Structural systems -- 6.1.2 LCA information -- 6.1.3 Frame and foundations - structural system -- 6.1.4 Column without foundation - single structural member -- 6.1.5 Girder - single structural member -- 6.1.6 Building envelope -- 6.1.7 Comparison in the operational phase -- 6.1.8 Conclusions for single-storey buildings -- 6.2 LCA Comparison of Low Rise Office Buildings -- 6.2.1 The low rise model building -- 6.2.2 LCA comparison of the structural system -- 6.3 LCA Comparison of Office Buildings -- 6.3.1 LCA information -- 6.3.2 Results of the LCA for the building systems -- 6.3.3 Results of the LCA for a reference building -- 6.4 Material Efficiency -- 6.4.1 Effective application of high strength steels -- 6.5 Sustainable Office Designer -- 6.5.1 Database -- 6.5.2 Example using sustainable office designer -- 6.6 Sustainability Comparison of Highway Bridges -- 6.6.1 Calculation of LCC for highway bridges -- 6.6.2 Calculation of external cost for highway bridges -- 6.6.3 Calculation of LCA for highway bridges -- 6.6.4 Additional indicators -- 6.7 Sustainability of Steel Construction for Renewable Energy -- 6.7.1 Offshore wind energy -- 6.7.2 Digester for biogas power plants -- 6.8 Consideration of Transport and Construction -- 6.8.1 Environmental impacts according to the origin of structural steel products -- 6.8.2 Comparison of expenses for transport and hoisting of large girders -- References -- Index -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.