ORPP logo
Image from Google Jackets

Introduction to Simulation Methods for Gas Discharge Plasmas : Accuracy, Reliability and Limitations.

By: Contributor(s): Material type: TextTextSeries: IOP Ebooks SeriesPublisher: Bristol : Institute of Physics Publishing, 2021Copyright date: ©2020Edition: 1st edDescription: 1 online resource (124 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780750341042
Subject(s): Genre/Form: Additional physical formats: Print version:: Introduction to Simulation Methods for Gas Discharge PlasmasDDC classification:
  • 538.6
LOC classification:
  • QC718.5.M36 R343 2020
Online resources:
Contents:
Intro -- Preface -- Author biographies -- Ismail Rafatov -- Anatoly Kudryavtsev -- Symbols -- Chapter 1 Modeling approaches for gas discharge plasmas -- 1.1 Introduction -- 1.1.1 Basic modeling approaches -- 1.2 Boltzmann kinetic equation and derivation of balance equations for the density, momentum, and energy of plasma particles -- 1.3 Two-fluid equations for plasma -- Exercise 1 (Derivation of fluid equations) -- 1.4 Fluid equations of plasma in drift-diffusion approximation -- 1.5 Limitations and applicability of the fluid model -- References -- Chapter 2 Numerical simulation of gas discharges: fluid, particle, and hybrid methods -- 2.1 Preliminary technique -- 2.1.1 Basic concepts and definitions -- 2.1.2 Finite-difference schemes for steady convection-diffusion equation -- 2.1.3 Numerical solution of a system with three-diagonal matrix: Thomas (TDMA) algorithm -- 2.1.4 Numerical methods of solution of non-linear (quasi-linear) convection-diffusion equation -- 2.2 Finite volume method (FVM) for convection-diffusion equation -- 2.2.1 Steady diffusion equation -- 2.2.2 Steady convection and diffusion equation -- 2.2.3 Time-dependent diffusion equation -- 2.2.4 Time-dependent convection and diffusion equation -- 2.3 Fluid models for gas discharge -- 2.3.1 Simple fluid model -- 2.3.2 Extended fluid model -- 2.4 PIC/MCC method for simulation of gas discharges -- 2.4.1 PIC/MCC simulation method -- 2.4.2 PIC/MCC simulation of capacitively coupled RF discharge in argon -- 2.5 Hybrid MC-fluid modeling of gas discharges -- 2.5.1 Spatially 1D modeling -- 2.5.2 Results of 1D numerical implementation -- 2.5.3 Spatially 2D implementation -- References -- Chapter 3 Numerical analysis of non-linear dynamics and transition to chaos in a gas discharge-semiconductor system -- 3.1 Model -- 3.1.1 Governing equations -- 3.1.2 Boundary conditions.
3.2 Non-linear oscillations and transition to chaos in a gas discharge-semiconductor system -- 3.2.1 Reducing of model equations and non-dimensionalization -- 3.2.2 Input parameters -- 3.2.3 Transition from periodical to fully chaotic oscillations -- 3.3 Pattern formation in the gas discharge-semiconductor system -- 3.3.1 Input parameters -- 3.3.2 Multiple stationary patterns -- 3.3.3 Comparison of computed and experimental results -- 3.3.4 Linear stability analysis -- 3.3.5 Spontaneous division of current filaments -- References.
Summary: This book is an introduction to the numerical modelling methods for gas discharge plasmas for graduate students and junior researchers. Topics covered include the essentials of basic modelling approaches (particle, fluid, and hybrid) for gas discharges, and the implementation of these methods with examples of glow (DC and RF) discharges.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Preface -- Author biographies -- Ismail Rafatov -- Anatoly Kudryavtsev -- Symbols -- Chapter 1 Modeling approaches for gas discharge plasmas -- 1.1 Introduction -- 1.1.1 Basic modeling approaches -- 1.2 Boltzmann kinetic equation and derivation of balance equations for the density, momentum, and energy of plasma particles -- 1.3 Two-fluid equations for plasma -- Exercise 1 (Derivation of fluid equations) -- 1.4 Fluid equations of plasma in drift-diffusion approximation -- 1.5 Limitations and applicability of the fluid model -- References -- Chapter 2 Numerical simulation of gas discharges: fluid, particle, and hybrid methods -- 2.1 Preliminary technique -- 2.1.1 Basic concepts and definitions -- 2.1.2 Finite-difference schemes for steady convection-diffusion equation -- 2.1.3 Numerical solution of a system with three-diagonal matrix: Thomas (TDMA) algorithm -- 2.1.4 Numerical methods of solution of non-linear (quasi-linear) convection-diffusion equation -- 2.2 Finite volume method (FVM) for convection-diffusion equation -- 2.2.1 Steady diffusion equation -- 2.2.2 Steady convection and diffusion equation -- 2.2.3 Time-dependent diffusion equation -- 2.2.4 Time-dependent convection and diffusion equation -- 2.3 Fluid models for gas discharge -- 2.3.1 Simple fluid model -- 2.3.2 Extended fluid model -- 2.4 PIC/MCC method for simulation of gas discharges -- 2.4.1 PIC/MCC simulation method -- 2.4.2 PIC/MCC simulation of capacitively coupled RF discharge in argon -- 2.5 Hybrid MC-fluid modeling of gas discharges -- 2.5.1 Spatially 1D modeling -- 2.5.2 Results of 1D numerical implementation -- 2.5.3 Spatially 2D implementation -- References -- Chapter 3 Numerical analysis of non-linear dynamics and transition to chaos in a gas discharge-semiconductor system -- 3.1 Model -- 3.1.1 Governing equations -- 3.1.2 Boundary conditions.

3.2 Non-linear oscillations and transition to chaos in a gas discharge-semiconductor system -- 3.2.1 Reducing of model equations and non-dimensionalization -- 3.2.2 Input parameters -- 3.2.3 Transition from periodical to fully chaotic oscillations -- 3.3 Pattern formation in the gas discharge-semiconductor system -- 3.3.1 Input parameters -- 3.3.2 Multiple stationary patterns -- 3.3.3 Comparison of computed and experimental results -- 3.3.4 Linear stability analysis -- 3.3.5 Spontaneous division of current filaments -- References.

This book is an introduction to the numerical modelling methods for gas discharge plasmas for graduate students and junior researchers. Topics covered include the essentials of basic modelling approaches (particle, fluid, and hybrid) for gas discharges, and the implementation of these methods with examples of glow (DC and RF) discharges.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.