ORPP logo
Image from Google Jackets

Reliability Engineering and Risk Analysis : A Practical Guide, Third Edition.

By: Contributor(s): Material type: TextTextPublisher: Milton : Taylor & Francis Group, 2016Copyright date: ©2017Edition: 3rd edDescription: 1 online resource (523 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781498745888
Subject(s): Genre/Form: Additional physical formats: Print version:: Reliability Engineering and Risk AnalysisDDC classification:
  • 620.00452
LOC classification:
  • TA169 .M627 2017
Online resources:
Contents:
Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface to the Third Edition -- Acknowledgments -- Authors -- Chapter 1 Reliability Engineering in Perspective -- 1.1 Why Study Reliability? -- 1.2 Failure Models -- 1.2.1 Stress-Strength Model -- 1.2.2 Damage-Endurance Model -- 1.2.3 Performance-Requirement Model -- 1.3 Failure Mechanisms -- 1.4 Performance Measures -- 1.5 Formal Definition of Reliability -- 1.6 Definition of Availability -- 1.7 Definition of Risk -- References -- Chapter 2 Basic Reliability Mathematics: Review of Probability and Statistics -- 2.1 Introduction -- 2.2 Elements of Probability -- 2.2.1 Sets and Boolean Algebra -- 2.2.2 Basic Laws of Probability -- 2.2.2.1 Classical Interpretation of Probability (Equally Likely Concept) -- 2.2.2.2 Frequency Interpretation of Probability -- 2.2.2.3 Subjective Interpretation of Probability -- 2.2.2.4 Calculus of Probability -- 2.2.3 Bayes' Theorem -- 2.3 Probability Distributions -- 2.3.1 Random Variable -- 2.3.2 Some Basic Discrete Distributions -- 2.3.2.1 Discrete Uniform Distribution -- 2.3.2.2 Binomial Distribution -- 2.3.2.3 Hypergeometric Distribution -- 2.3.2.4 Poisson's Distribution -- 2.3.2.5 Geometric Distribution -- 2.3.3 Some Basic Continuous Distributions -- 2.3.3.1 Normal Distribution -- 2.3.3.2 Lognormal Distribution -- 2.3.3.3 Exponential Distribution -- 2.3.3.4 Weibull Distribution -- 2.3.3.5 Gamma Distribution -- 2.3.3.6 Beta Distribution -- 2.3.3.7 Beta-Exponential Distribution -- 2.3.4 Joint and Marginal Distributions -- 2.3.5 Truncated Distributions -- 2.4 Basic Characteristics of Random Variables -- 2.5 Estimation and Hypothesis Testing -- 2.5.1 Point Estimation -- 2.5.1.1 Method of Moments -- 2.5.1.2 Maximum Likelihood Method -- 2.5.2 Interval Estimation and Hypothesis Testing -- 2.5.2.1 Hypothesis Testing -- 2.5.3 Bayesian Estimation.
2.6 Frequency Tables and Histograms -- 2.7 Goodness-of-Fit Tests -- 2.7.1 Chi-Square Test -- 2.7.2 Kolmogorov-Smirnov Test -- 2.8 Regression Analysis -- 2.8.1 Simple Linear Regression -- References -- Chapter 3 Component Reliability Analysis -- 3.1 Concept of Reliability -- 3.1.1 Reliability Function -- 3.1.2 Failure Rate -- 3.1.3 Some Useful Bounds and Inequalities for IFR (DFR) -- 3.1.3.1 Bounds Based on a Known Quantile -- 3.1.3.2 Bounds Based on a Known Mean -- 3.1.3.3 Inequality for Coefficient of Variation -- 3.2 Common Distributions in Component Reliability -- 3.2.1 Exponential Distribution -- 3.2.2 Weibull Distribution -- 3.2.3 Gamma Distribution -- 3.2.4 Normal Distribution -- 3.2.5 Lognormal Distribution -- 3.2.6 Extreme Value Distributions -- 3.2.6.1 Some Basic Concepts and Definitions -- 3.2.6.2 Order Statistics from Samples of Random Size -- 3.2.6.3 Asymptotic Distributions of Maxima and Minima -- 3.2.6.4 Three Types of Limit Distributions -- 3.3 Reliability Data and Model Selection -- 3.3.1 Graphical Nonparametric Procedures -- 3.3.1.1 Small Samples -- 3.3.1.2 Large Samples -- 3.3.2 Probability Plotting -- 3.3.2.1 Exponential Distribution Probability Plotting -- 3.3.2.2 Weibull Distribution Probability Plotting -- 3.3.2.3 Normal and Lognormal Distribution Probability Plotting -- 3.3.3 Total-Time-on-Test Plots -- 3.4 Maximum Likelihood Estimation of Reliability Distribution Parameters -- 3.4.1 Censored Data -- 3.4.1.1 Left and Right Censoring -- 3.4.1.2 Type I Censoring -- 3.4.1.3 Type II Censoring -- 3.4.1.4 Types of Reliability Tests -- 3.4.1.5 Random Censoring -- 3.4.1.6 Maximum Likelihood Estimation Using Reliability Data -- 3.4.2 Exponential Distribution Point Estimation -- 3.4.2.1 Type I Life Test with Replacement -- 3.4.2.2 Type I Life Test without Replacement -- 3.4.2.3 Type II Life Test with Replacement.
3.4.2.4 Type II Life Test without Replacement -- 3.4.3 Exponential Distribution Interval Estimation -- 3.4.4 Lognormal Distribution -- 3.4.5 Weibull Distribution -- 3.4.6 Binomial Distribution -- 3.5 Classical Nonparametric Distribution Estimation -- 3.5.1 Confidence Intervals for cdf and Reliability Function for Complete and Singly Censored Data -- 3.5.2 Confidence Intervals for cdf and Reliability Function for Multiply Censored Data -- 3.6 Bayesian Estimation Procedures -- 3.6.1 Estimation of the Parameter of Exponential Distribution -- 3.6.1.1 Selecting Parameters of Prior Distribution -- 3.6.1.2 Uniform Prior Distribution -- 3.6.1.3 Jeffreys Prior Distribution -- 3.6.2 Bayesian Estimation of the Parameter of Binomial Distribution -- 3.6.2.1 Standard Uniform Prior Distribution -- 3.6.2.2 Truncated Standard Uniform Prior Distribution -- 3.6.2.3 Beta Prior Distribution -- 3.6.2.4 Jeffreys Prior Distribution for Parameter p of the Binomial Distribution -- 3.6.2.5 Lognormal Prior Distribution -- 3.6.3 Bayesian Estimation of the Weibull Distribution -- 3.6.3.1 Prior Distribution -- 3.6.3.2 Jeffreys Prior for Weibull Parameters -- 3.6.3.3 Posterior Distributions (Posterior Distribution of Weibull cdf at a Fixed Exposure) -- 3.6.3.4 Posterior Distribution of Weibull Distribution Parameters -- 3.6.3.5 Particular Case -- 3.6.4 Bayesian Probability Papers -- 3.6.4.1 Classical Simple Linear Regression -- 3.6.4.2 Classical Probability Papers -- 3.6.4.3 Bayesian Simple Linear Regression and Bayesian Probability Papers -- 3.6.4.4 Including Prior Information about Model Parameters -- 3.6.4.5 Including Prior Information about the Reliability or cdf -- 3.7 Methods of Generic Failure Rate Determination -- References -- Chapter 4 System Reliability Analysis -- 4.1 Reliability Block Diagram Method -- 4.1.1 Series System -- 4.1.2 Parallel Systems.
4.1.3 Standby Redundant Systems -- 4.1.4 Load-Sharing Systems -- 4.1.5 Complex Systems -- 4.2 Fault Tree and Success Tree Methods -- 4.2.1 Fault Tree Method -- 4.2.2 Evaluation of Logic Trees -- 4.2.2.1 Analysis of Logic Trees Using Boolean Algebra -- 4.2.2.2 Combinatorial (Truth Table) Technique for Evaluation of Logic Trees -- 4.2.2.3 Binary Decision Diagrams -- 4.2.3 Success Tree Method -- 4.3 Event Tree Method -- 4.3.1 Construction of Event Trees -- 4.3.2 Evaluation of Event Trees -- 4.4 Master Logic Diagram -- 4.5 Failure Mode and Effect Analysis -- 4.5.1 Types of FMEA -- 4.5.2 FMEA/FMECA Procedure -- 4.5.3 FMEA Implementation -- 4.5.3.1 FMEA for Aerospace Applications -- 4.5.3.2 FMEA for Transportation Applications -- 4.5.4 FMECA Procedure: Criticality Analysis -- References -- Chapter 5 Reliability and Availability of Repairable Components and Systems -- 5.1 Repairable System Reliability -- 5.1.1 Basics of Point Processes -- 5.1.2 Homogeneous Poisson Process -- 5.1.3 Renewal Process -- 5.1.4 Nonhomogeneous Poisson Process -- 5.1.5 General Renewal Process -- 5.1.6 Probabilistic Bounds -- 5.1.7 Nonparametric Data Analysis -- 5.1.7.1 Estimation of the CIF -- 5.1.7.2 Estimation Based on One Realization (Ungrouped Data) -- 5.1.7.3 Estimation Based on One Realization (Grouped Data) -- 5.1.7.4 Estimation Based on Several Realizations -- 5.1.7.5 Confidence Limits for CIF -- 5.1.8 Data Analysis for the HPP -- 5.1.8.1 Procedures Based on the Poisson Distribution -- 5.1.8.2 Procedures Based on the Exponential Distribution of Time Intervals -- 5.1.9 Data Analysis for the NHPP -- 5.1.9.1 Regression Analysis of Time Intervals -- 5.1.9.2 Maximum Likelihood Procedures -- 5.1.9.3 Laplace's Test -- 5.1.10 Data Analysis for GRP -- 5.1.10.1 Example Based on Simulated Data -- 5.1.10.2 Example Based on Real Data -- 5.2 Availability of Repairable Systems.
5.2.1 Instantaneous (Point) Availability -- 5.2.2 Limiting Point Availability -- 5.2.3 Average Availability -- 5.2.4 Availability Measures Based on Causes of Unavailability -- 5.2.4.1 Inherent Availability -- 5.2.4.2 Achieved Availability -- 5.2.4.3 Operational Availability -- 5.3 Use of Markov Processes for Determining System Availability -- 5.4 Use of System Analysis Techniques in the Availability Calculations of Complex Systems -- References -- Chapter 6 Selected Topics in Reliability Modeling -- 6.1 Probabilistic Physics-of-Failure Reliability Modeling -- 6.1.1 Stress-Strength Model -- 6.1.2 Damage-Endurance Model -- 6.1.3 Performance-Requirement Model -- 6.2 Software Reliability Analysis -- 6.2.1 Introduction -- 6.2.2 Software Reliability Models -- 6.2.2.1 Classification -- 6.2.3 Software Life Cycle Models -- 6.2.3.1 Waterfall Model -- 6.3 Human Reliability -- 6.3.1 HRA Process -- 6.3.2 HRA Models -- 6.3.2.1 Simulation Methods -- 6.3.2.2 Expert Judgment Methods -- 6.3.2.3 Analytical Methods -- 6.3.3 Human Reliability Data -- 6.4 Measures of Importance -- 6.4.1 Birnbaum Measure of Importance -- 6.4.2 Criticality Importance -- 6.4.3 Fussell-Vesely Importance -- 6.4.4 Risk-Reduction Importance -- 6.4.5 RAW Importance -- 6.4.6 Practical Aspects of Importance Measures -- 6.5 Maintenance Considerations in Reliability -- 6.5.1 Reliability-Centered Maintenance -- 6.5.2 Optimal Preventive Maintenance Scheduling -- 6.5.2.1 Economic Benefit of Optimization -- 6.5.3 Comparative Analysis of Optimal Maintenance Policies under General Repair with Underlying Weibull Distributions -- 6.6 Reliability Growth -- 6.6.1 Graphical Method -- 6.6.2 Duane Method -- 6.6.3 Army Material Systems Analysis Activity Method -- References -- Chapter 7 Selected Topics in Reliability Data Analysis -- 7.1 Accelerated Life Testing -- 7.1.1 Basic AL Notions.
7.1.1.1 Time Transformation Function for the Case of Constant Stress.
Summary: This undergraduate and graduate textbook provides a practical and comprehensive overview of reliability and risk analysis techniques. Written for engineering students and practicing engineers, the book is multi-disciplinary in scope.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface to the Third Edition -- Acknowledgments -- Authors -- Chapter 1 Reliability Engineering in Perspective -- 1.1 Why Study Reliability? -- 1.2 Failure Models -- 1.2.1 Stress-Strength Model -- 1.2.2 Damage-Endurance Model -- 1.2.3 Performance-Requirement Model -- 1.3 Failure Mechanisms -- 1.4 Performance Measures -- 1.5 Formal Definition of Reliability -- 1.6 Definition of Availability -- 1.7 Definition of Risk -- References -- Chapter 2 Basic Reliability Mathematics: Review of Probability and Statistics -- 2.1 Introduction -- 2.2 Elements of Probability -- 2.2.1 Sets and Boolean Algebra -- 2.2.2 Basic Laws of Probability -- 2.2.2.1 Classical Interpretation of Probability (Equally Likely Concept) -- 2.2.2.2 Frequency Interpretation of Probability -- 2.2.2.3 Subjective Interpretation of Probability -- 2.2.2.4 Calculus of Probability -- 2.2.3 Bayes' Theorem -- 2.3 Probability Distributions -- 2.3.1 Random Variable -- 2.3.2 Some Basic Discrete Distributions -- 2.3.2.1 Discrete Uniform Distribution -- 2.3.2.2 Binomial Distribution -- 2.3.2.3 Hypergeometric Distribution -- 2.3.2.4 Poisson's Distribution -- 2.3.2.5 Geometric Distribution -- 2.3.3 Some Basic Continuous Distributions -- 2.3.3.1 Normal Distribution -- 2.3.3.2 Lognormal Distribution -- 2.3.3.3 Exponential Distribution -- 2.3.3.4 Weibull Distribution -- 2.3.3.5 Gamma Distribution -- 2.3.3.6 Beta Distribution -- 2.3.3.7 Beta-Exponential Distribution -- 2.3.4 Joint and Marginal Distributions -- 2.3.5 Truncated Distributions -- 2.4 Basic Characteristics of Random Variables -- 2.5 Estimation and Hypothesis Testing -- 2.5.1 Point Estimation -- 2.5.1.1 Method of Moments -- 2.5.1.2 Maximum Likelihood Method -- 2.5.2 Interval Estimation and Hypothesis Testing -- 2.5.2.1 Hypothesis Testing -- 2.5.3 Bayesian Estimation.

2.6 Frequency Tables and Histograms -- 2.7 Goodness-of-Fit Tests -- 2.7.1 Chi-Square Test -- 2.7.2 Kolmogorov-Smirnov Test -- 2.8 Regression Analysis -- 2.8.1 Simple Linear Regression -- References -- Chapter 3 Component Reliability Analysis -- 3.1 Concept of Reliability -- 3.1.1 Reliability Function -- 3.1.2 Failure Rate -- 3.1.3 Some Useful Bounds and Inequalities for IFR (DFR) -- 3.1.3.1 Bounds Based on a Known Quantile -- 3.1.3.2 Bounds Based on a Known Mean -- 3.1.3.3 Inequality for Coefficient of Variation -- 3.2 Common Distributions in Component Reliability -- 3.2.1 Exponential Distribution -- 3.2.2 Weibull Distribution -- 3.2.3 Gamma Distribution -- 3.2.4 Normal Distribution -- 3.2.5 Lognormal Distribution -- 3.2.6 Extreme Value Distributions -- 3.2.6.1 Some Basic Concepts and Definitions -- 3.2.6.2 Order Statistics from Samples of Random Size -- 3.2.6.3 Asymptotic Distributions of Maxima and Minima -- 3.2.6.4 Three Types of Limit Distributions -- 3.3 Reliability Data and Model Selection -- 3.3.1 Graphical Nonparametric Procedures -- 3.3.1.1 Small Samples -- 3.3.1.2 Large Samples -- 3.3.2 Probability Plotting -- 3.3.2.1 Exponential Distribution Probability Plotting -- 3.3.2.2 Weibull Distribution Probability Plotting -- 3.3.2.3 Normal and Lognormal Distribution Probability Plotting -- 3.3.3 Total-Time-on-Test Plots -- 3.4 Maximum Likelihood Estimation of Reliability Distribution Parameters -- 3.4.1 Censored Data -- 3.4.1.1 Left and Right Censoring -- 3.4.1.2 Type I Censoring -- 3.4.1.3 Type II Censoring -- 3.4.1.4 Types of Reliability Tests -- 3.4.1.5 Random Censoring -- 3.4.1.6 Maximum Likelihood Estimation Using Reliability Data -- 3.4.2 Exponential Distribution Point Estimation -- 3.4.2.1 Type I Life Test with Replacement -- 3.4.2.2 Type I Life Test without Replacement -- 3.4.2.3 Type II Life Test with Replacement.

3.4.2.4 Type II Life Test without Replacement -- 3.4.3 Exponential Distribution Interval Estimation -- 3.4.4 Lognormal Distribution -- 3.4.5 Weibull Distribution -- 3.4.6 Binomial Distribution -- 3.5 Classical Nonparametric Distribution Estimation -- 3.5.1 Confidence Intervals for cdf and Reliability Function for Complete and Singly Censored Data -- 3.5.2 Confidence Intervals for cdf and Reliability Function for Multiply Censored Data -- 3.6 Bayesian Estimation Procedures -- 3.6.1 Estimation of the Parameter of Exponential Distribution -- 3.6.1.1 Selecting Parameters of Prior Distribution -- 3.6.1.2 Uniform Prior Distribution -- 3.6.1.3 Jeffreys Prior Distribution -- 3.6.2 Bayesian Estimation of the Parameter of Binomial Distribution -- 3.6.2.1 Standard Uniform Prior Distribution -- 3.6.2.2 Truncated Standard Uniform Prior Distribution -- 3.6.2.3 Beta Prior Distribution -- 3.6.2.4 Jeffreys Prior Distribution for Parameter p of the Binomial Distribution -- 3.6.2.5 Lognormal Prior Distribution -- 3.6.3 Bayesian Estimation of the Weibull Distribution -- 3.6.3.1 Prior Distribution -- 3.6.3.2 Jeffreys Prior for Weibull Parameters -- 3.6.3.3 Posterior Distributions (Posterior Distribution of Weibull cdf at a Fixed Exposure) -- 3.6.3.4 Posterior Distribution of Weibull Distribution Parameters -- 3.6.3.5 Particular Case -- 3.6.4 Bayesian Probability Papers -- 3.6.4.1 Classical Simple Linear Regression -- 3.6.4.2 Classical Probability Papers -- 3.6.4.3 Bayesian Simple Linear Regression and Bayesian Probability Papers -- 3.6.4.4 Including Prior Information about Model Parameters -- 3.6.4.5 Including Prior Information about the Reliability or cdf -- 3.7 Methods of Generic Failure Rate Determination -- References -- Chapter 4 System Reliability Analysis -- 4.1 Reliability Block Diagram Method -- 4.1.1 Series System -- 4.1.2 Parallel Systems.

4.1.3 Standby Redundant Systems -- 4.1.4 Load-Sharing Systems -- 4.1.5 Complex Systems -- 4.2 Fault Tree and Success Tree Methods -- 4.2.1 Fault Tree Method -- 4.2.2 Evaluation of Logic Trees -- 4.2.2.1 Analysis of Logic Trees Using Boolean Algebra -- 4.2.2.2 Combinatorial (Truth Table) Technique for Evaluation of Logic Trees -- 4.2.2.3 Binary Decision Diagrams -- 4.2.3 Success Tree Method -- 4.3 Event Tree Method -- 4.3.1 Construction of Event Trees -- 4.3.2 Evaluation of Event Trees -- 4.4 Master Logic Diagram -- 4.5 Failure Mode and Effect Analysis -- 4.5.1 Types of FMEA -- 4.5.2 FMEA/FMECA Procedure -- 4.5.3 FMEA Implementation -- 4.5.3.1 FMEA for Aerospace Applications -- 4.5.3.2 FMEA for Transportation Applications -- 4.5.4 FMECA Procedure: Criticality Analysis -- References -- Chapter 5 Reliability and Availability of Repairable Components and Systems -- 5.1 Repairable System Reliability -- 5.1.1 Basics of Point Processes -- 5.1.2 Homogeneous Poisson Process -- 5.1.3 Renewal Process -- 5.1.4 Nonhomogeneous Poisson Process -- 5.1.5 General Renewal Process -- 5.1.6 Probabilistic Bounds -- 5.1.7 Nonparametric Data Analysis -- 5.1.7.1 Estimation of the CIF -- 5.1.7.2 Estimation Based on One Realization (Ungrouped Data) -- 5.1.7.3 Estimation Based on One Realization (Grouped Data) -- 5.1.7.4 Estimation Based on Several Realizations -- 5.1.7.5 Confidence Limits for CIF -- 5.1.8 Data Analysis for the HPP -- 5.1.8.1 Procedures Based on the Poisson Distribution -- 5.1.8.2 Procedures Based on the Exponential Distribution of Time Intervals -- 5.1.9 Data Analysis for the NHPP -- 5.1.9.1 Regression Analysis of Time Intervals -- 5.1.9.2 Maximum Likelihood Procedures -- 5.1.9.3 Laplace's Test -- 5.1.10 Data Analysis for GRP -- 5.1.10.1 Example Based on Simulated Data -- 5.1.10.2 Example Based on Real Data -- 5.2 Availability of Repairable Systems.

5.2.1 Instantaneous (Point) Availability -- 5.2.2 Limiting Point Availability -- 5.2.3 Average Availability -- 5.2.4 Availability Measures Based on Causes of Unavailability -- 5.2.4.1 Inherent Availability -- 5.2.4.2 Achieved Availability -- 5.2.4.3 Operational Availability -- 5.3 Use of Markov Processes for Determining System Availability -- 5.4 Use of System Analysis Techniques in the Availability Calculations of Complex Systems -- References -- Chapter 6 Selected Topics in Reliability Modeling -- 6.1 Probabilistic Physics-of-Failure Reliability Modeling -- 6.1.1 Stress-Strength Model -- 6.1.2 Damage-Endurance Model -- 6.1.3 Performance-Requirement Model -- 6.2 Software Reliability Analysis -- 6.2.1 Introduction -- 6.2.2 Software Reliability Models -- 6.2.2.1 Classification -- 6.2.3 Software Life Cycle Models -- 6.2.3.1 Waterfall Model -- 6.3 Human Reliability -- 6.3.1 HRA Process -- 6.3.2 HRA Models -- 6.3.2.1 Simulation Methods -- 6.3.2.2 Expert Judgment Methods -- 6.3.2.3 Analytical Methods -- 6.3.3 Human Reliability Data -- 6.4 Measures of Importance -- 6.4.1 Birnbaum Measure of Importance -- 6.4.2 Criticality Importance -- 6.4.3 Fussell-Vesely Importance -- 6.4.4 Risk-Reduction Importance -- 6.4.5 RAW Importance -- 6.4.6 Practical Aspects of Importance Measures -- 6.5 Maintenance Considerations in Reliability -- 6.5.1 Reliability-Centered Maintenance -- 6.5.2 Optimal Preventive Maintenance Scheduling -- 6.5.2.1 Economic Benefit of Optimization -- 6.5.3 Comparative Analysis of Optimal Maintenance Policies under General Repair with Underlying Weibull Distributions -- 6.6 Reliability Growth -- 6.6.1 Graphical Method -- 6.6.2 Duane Method -- 6.6.3 Army Material Systems Analysis Activity Method -- References -- Chapter 7 Selected Topics in Reliability Data Analysis -- 7.1 Accelerated Life Testing -- 7.1.1 Basic AL Notions.

7.1.1.1 Time Transformation Function for the Case of Constant Stress.

This undergraduate and graduate textbook provides a practical and comprehensive overview of reliability and risk analysis techniques. Written for engineering students and practicing engineers, the book is multi-disciplinary in scope.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.