ORPP logo
Image from Google Jackets

Single-Molecule Electronics : An Introduction to Synthesis, Measurement and Theory.

By: Material type: TextTextPublisher: Singapore : Springer Singapore Pte. Limited, 2016Copyright date: ©2016Edition: 1st edDescription: 1 online resource (239 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789811007248
Subject(s): Genre/Form: Additional physical formats: Print version:: Single-Molecule ElectronicsDDC classification:
  • 621.381
LOC classification:
  • QD450-882
Online resources:
Contents:
Intro -- Preface -- Contents -- 1 Molecular Electronics: A Brief Overview of the Status of the Field -- 1.1 Definition of Molecular Electronics -- 1.2 A Brief History -- 1.2.1 Molecular Monolayers: Langmuir-Blodgett Technique -- 1.2.2 Molecular Monolayers: Self-Assembly -- 1.2.3 Single Molecules -- 1.2.4 Present Status of the Field -- 1.3 Will Self-Assembled Molecular Circuits Replace Silicon? -- 1.4 Intrinsically Quantum -- 1.5 Challenges for Applications -- 1.6 Challenges for Fundamental Understanding -- 1.7 Outlook and Conclusions -- References -- 2 Methods to Determine Electrical Conductance of Single-Molecule Junctions -- 2.1 Introduction -- 2.2 Mechanical Break Junction Method -- 2.2.1 Principle and Instruments for the Break Junction Method -- 2.2.1.1 Scanning Tunneling Microscope-Break Junction (STM-BJ) -- 2.2.1.2 Mechanically Controllable Break Junction -- 2.2.2 Statistical Data Analysis -- 2.2.2.1 Distance and Conductance: Two-Dimensional Histogram -- 2.2.2.2 Cross Correlation and Conditional Histogram Analysis -- 2.2.3 Related Techniques -- 2.2.3.1 Distance Modulations -- 2.2.3.2 Electromechanical Responses -- 2.2.3.3 Electrical and Electrolyte Gating -- 2.3 Other Experimental Methods to Prepare Single-Molecule Junctions -- 2.3.1 Electromigration Technique -- 2.3.2 Ultrahigh-Vacuum and Low-Temperature Scanning Tunneling Microscope -- 2.4 Summary and Perspective -- References -- 3 Characterization of the Single Molecular Junction -- 3.1 Introduction -- 3.1.1 Plateau Length Analysis -- 3.1.2 Point-Contact Spectroscopy and Inelastic Electron Tunneling Spectroscopy -- 3.1.3 Surface-Enhanced Raman Scattering -- 3.1.4 Current-Voltage Characteristics -- 3.1.5 Thermopower Measurement -- 3.1.6 Shot-Noise Measurement -- 3.1.7 Force Measurement -- 3.2 Summary and Future Perspective -- References.
4 Molecular Wires: An Overview of the Building Blocks of Molecular Electronics -- 4.1 Introduction -- 4.2 Saturated Hydrocarbon Wires -- 4.3 Oligo(enes) and Oligo(ynes) -- 4.4 Oligo(arylenes) -- 4.5 Oligo(phenylene ethynylenes) and Oligo(phenylene vinylenes) -- 4.6 Summary and Outlook -- References -- 5 Insulated Oligothiophenes -- 5.1 Introduction -- 5.2 Oligothiophenes with Bulky Silyl Substituents as Insulating Units -- 5.3 Completely Insulated Oligothiophenes with Anchor Units -- 5.4 Insulation-Tuned Oligothiophenes -- 5.5 Insulated Oligothiophenes with Hopping Conduction -- 5.6 Insulated Oligothiophenes with Electron-Affinity Characteristics -- 5.7 Summary -- References -- 6 Synthesis and Physical Properties of Three-Dimensionally Insulated Molecular Wires -- 6.1 Introduction -- 6.2 Synthesis of Three-Dimensionally Insulated Molecular Wires -- 6.2.1 Synthesis of Cyclodextrin-Based Insulated Molecular Wires -- 6.2.2 Synthesis of Permethylated Cyclodextrin-Based Insulated Molecular Wires -- 6.2.3 Synthesis of Insulated Molecular Wires with High Charge Mobility -- 6.2.4 Synthesis of Functionalized Insulated Molecular Wires -- 6.2.5 Synthesis of Insulated Metallopolymers -- 6.2.5.1 Synthesis of Solid-State Phosphorescence Insulated Metallopolymers -- 6.2.5.2 Synthesis of One-Dimensional Insulated Coordination Polymers -- 6.3 The Establishment of Wiring Methods Utilizing Organic Reactions Between Nanosized Gaps -- 6.4 Summary and Conclusions -- References -- 7 Orbital Rule for Electron Transport of Molecular Junctions -- 7.1 Introduction -- 7.2 Tight-Binding Model for Molecular Junctions -- 7.2.1 Two-Site Model -- 7.2.2 Three-Site (Triangular) Model -- 7.2.3 Orbital Rule from Experimental Observations -- 7.2.4 Spin-Dependent Transport in Molecular Spin Junctions -- 7.2.4.1 Coherent Approach for the Spin-Flip Process.
7.2.4.2 Incoherent Approach for the Spin-Flip Process -- 7.3 Summary -- References -- 8 Theoretical Aspects of Quantum Transport and Computational Modeling of Molecular Electronic Device -- 8.1 Introduction -- 8.2 Theory of Electric Transport in Molecular Junctions -- 8.2.1 Length Dependence of Conductance and Charge Migration Mechanisms -- 8.2.2 Universal Temperature Dependence Crossover and Inelastic Scattering Effect by Electron-Vibron Interaction -- 8.2.3 MO Engineering and Contact Chemistry via First-Principles Calculations -- 8.3 Rectification by a Single pn Molecule with Symmetric Anchors and Electrodes: Aviram-Ratner or Ellenbogen-Love Diode? -- 8.4 Summary -- References -- 9 Single-Molecule Sequencing -- 9.1 Introduction -- 9.2 DNA Structures -- 9.3 The Principle of Single-Molecule Sequencing -- 9.4 Measurement and Analysis Methods -- 9.5 Single-Molecule Identification of Base Molecules -- 9.6 DNA Sequencing -- 9.7 RNA Sequencing -- 9.8 Peptide Sequencing -- 9.9 Perspective -- References.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Preface -- Contents -- 1 Molecular Electronics: A Brief Overview of the Status of the Field -- 1.1 Definition of Molecular Electronics -- 1.2 A Brief History -- 1.2.1 Molecular Monolayers: Langmuir-Blodgett Technique -- 1.2.2 Molecular Monolayers: Self-Assembly -- 1.2.3 Single Molecules -- 1.2.4 Present Status of the Field -- 1.3 Will Self-Assembled Molecular Circuits Replace Silicon? -- 1.4 Intrinsically Quantum -- 1.5 Challenges for Applications -- 1.6 Challenges for Fundamental Understanding -- 1.7 Outlook and Conclusions -- References -- 2 Methods to Determine Electrical Conductance of Single-Molecule Junctions -- 2.1 Introduction -- 2.2 Mechanical Break Junction Method -- 2.2.1 Principle and Instruments for the Break Junction Method -- 2.2.1.1 Scanning Tunneling Microscope-Break Junction (STM-BJ) -- 2.2.1.2 Mechanically Controllable Break Junction -- 2.2.2 Statistical Data Analysis -- 2.2.2.1 Distance and Conductance: Two-Dimensional Histogram -- 2.2.2.2 Cross Correlation and Conditional Histogram Analysis -- 2.2.3 Related Techniques -- 2.2.3.1 Distance Modulations -- 2.2.3.2 Electromechanical Responses -- 2.2.3.3 Electrical and Electrolyte Gating -- 2.3 Other Experimental Methods to Prepare Single-Molecule Junctions -- 2.3.1 Electromigration Technique -- 2.3.2 Ultrahigh-Vacuum and Low-Temperature Scanning Tunneling Microscope -- 2.4 Summary and Perspective -- References -- 3 Characterization of the Single Molecular Junction -- 3.1 Introduction -- 3.1.1 Plateau Length Analysis -- 3.1.2 Point-Contact Spectroscopy and Inelastic Electron Tunneling Spectroscopy -- 3.1.3 Surface-Enhanced Raman Scattering -- 3.1.4 Current-Voltage Characteristics -- 3.1.5 Thermopower Measurement -- 3.1.6 Shot-Noise Measurement -- 3.1.7 Force Measurement -- 3.2 Summary and Future Perspective -- References.

4 Molecular Wires: An Overview of the Building Blocks of Molecular Electronics -- 4.1 Introduction -- 4.2 Saturated Hydrocarbon Wires -- 4.3 Oligo(enes) and Oligo(ynes) -- 4.4 Oligo(arylenes) -- 4.5 Oligo(phenylene ethynylenes) and Oligo(phenylene vinylenes) -- 4.6 Summary and Outlook -- References -- 5 Insulated Oligothiophenes -- 5.1 Introduction -- 5.2 Oligothiophenes with Bulky Silyl Substituents as Insulating Units -- 5.3 Completely Insulated Oligothiophenes with Anchor Units -- 5.4 Insulation-Tuned Oligothiophenes -- 5.5 Insulated Oligothiophenes with Hopping Conduction -- 5.6 Insulated Oligothiophenes with Electron-Affinity Characteristics -- 5.7 Summary -- References -- 6 Synthesis and Physical Properties of Three-Dimensionally Insulated Molecular Wires -- 6.1 Introduction -- 6.2 Synthesis of Three-Dimensionally Insulated Molecular Wires -- 6.2.1 Synthesis of Cyclodextrin-Based Insulated Molecular Wires -- 6.2.2 Synthesis of Permethylated Cyclodextrin-Based Insulated Molecular Wires -- 6.2.3 Synthesis of Insulated Molecular Wires with High Charge Mobility -- 6.2.4 Synthesis of Functionalized Insulated Molecular Wires -- 6.2.5 Synthesis of Insulated Metallopolymers -- 6.2.5.1 Synthesis of Solid-State Phosphorescence Insulated Metallopolymers -- 6.2.5.2 Synthesis of One-Dimensional Insulated Coordination Polymers -- 6.3 The Establishment of Wiring Methods Utilizing Organic Reactions Between Nanosized Gaps -- 6.4 Summary and Conclusions -- References -- 7 Orbital Rule for Electron Transport of Molecular Junctions -- 7.1 Introduction -- 7.2 Tight-Binding Model for Molecular Junctions -- 7.2.1 Two-Site Model -- 7.2.2 Three-Site (Triangular) Model -- 7.2.3 Orbital Rule from Experimental Observations -- 7.2.4 Spin-Dependent Transport in Molecular Spin Junctions -- 7.2.4.1 Coherent Approach for the Spin-Flip Process.

7.2.4.2 Incoherent Approach for the Spin-Flip Process -- 7.3 Summary -- References -- 8 Theoretical Aspects of Quantum Transport and Computational Modeling of Molecular Electronic Device -- 8.1 Introduction -- 8.2 Theory of Electric Transport in Molecular Junctions -- 8.2.1 Length Dependence of Conductance and Charge Migration Mechanisms -- 8.2.2 Universal Temperature Dependence Crossover and Inelastic Scattering Effect by Electron-Vibron Interaction -- 8.2.3 MO Engineering and Contact Chemistry via First-Principles Calculations -- 8.3 Rectification by a Single pn Molecule with Symmetric Anchors and Electrodes: Aviram-Ratner or Ellenbogen-Love Diode? -- 8.4 Summary -- References -- 9 Single-Molecule Sequencing -- 9.1 Introduction -- 9.2 DNA Structures -- 9.3 The Principle of Single-Molecule Sequencing -- 9.4 Measurement and Analysis Methods -- 9.5 Single-Molecule Identification of Base Molecules -- 9.6 DNA Sequencing -- 9.7 RNA Sequencing -- 9.8 Peptide Sequencing -- 9.9 Perspective -- References.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.