Waste Valorisation : Waste Streams in a Circular Economy.
Material type:
- text
- computer
- online resource
- 9781119502692
- 338.4766288
- HD9502.5.B542 .W378 2021
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Series Preface -- Preface -- Chapter 1 Overview of Waste Valorisation Concepts from a Circular Economy Perspective -- 1.1 Introduction -- 1.2 Development of (Bio)Chemical Process for Utilization of Waste as a Bioresource -- 1.2.1 Mechanical Pretreatment -- 1.2.2 Physical Pretreatment -- 1.2.3 Chemical Pretreatment -- 1.2.4 Biological Pretreatment -- 1.3 Process Integration for Waste‐Based Biorefinery -- 1.3.1 Food Waste Biorefinery -- 1.3.2 Agricultural Waste Biorefinery -- 1.3.3 Industrial Waste Biorefinery -- 1.3.4 Wastewater Biorefinery -- 1.4 Closed Loop Recirculation in a Bio‐based Economy -- 1.5 Conclusions and Future Trends -- 1.5 References -- Chapter 2 Waste as a Bioresource -- 2.1 Introduction -- 2.2 Waste Streams and Their Suitability as Feedstock for Valorisation: Is All Waste a Resource? -- 2.3 (Bio)diversity and Variability of Waste Feedstock -- 2.3.1 Agro‐industrial Wastes -- 2.3.2 Municipal Solid Wastes -- 2.3.3 Livestock Wastes -- 2.3.4 Industrial Wastes -- 2.4 Drivers, Policies and Markets for Value‐added Waste‐derived Products -- 2.5 Conclusions and Future Trends -- 2.5 Acknowledgements -- 2.5 References -- Chapter 3 Treatment of Waste -- 3.1 Introduction -- 3.2 Solid Waste Management -- 3.2.1 E‐waste Management -- 3.2.2 Hazardous Waste Management -- 3.2.3 Biomedical Waste Management -- 3.2.4 Plastic Waste Management -- 3.2.5 Solid Waste Management Options -- 3.3 General Approach for Waste Treatment and Conversion to Value‐added Products: Biochemical, Mechanical, and Thermochemical -- 3.3.1 Conventional Treatment -- 3.3.2 Biological/Biochemical Treatment -- 3.3.3 Thermal Methods -- 3.3.4 Open Burning -- 3.3.5 Mechanical Treatment -- 3.4 Factors Influencing Selection of an Appropriate Valorisation Technique for Specific Waste Types.
3.4.1 Case Study of Paper Waste Recycling -- 3.4.2 Deinking Process -- 3.4.3 Paper Deinking Residue -- 3.5 Conventional and Novel Techniques: Overall Comparison in Terms of Energy Consumption, Waste Stream Generation and Cost -- 3.5.1 Pyrolysis -- 3.5.2 Gasification -- 3.5.3 Incineration -- 3.6 Energy Consumption, Waste Stream Generation, and Costs of Conventional and Novel Waste Treatment Technologies -- 3.7 Conclusions and Future Trends -- 3.7 Acknowledgement -- 3.7 References -- Chapter 4 Valorisation of Agricultural Waste Residues -- 4.1 Introduction -- 4.2 Agricultural Waste Definition, Composition, Variability, and Associated Policies and Regulations -- 4.2.1 Agricultural Waste from Farming -- 4.2.2 Agricultural Wastes from Livestock -- 4.2.3 Agricultural Waste Availability -- 4.3 Conventional Techniques - Anaerobic Digestion, Pyrolysis, Gasification, and Solvent Treatment/Extraction -- 4.3.1 Anaerobic Digestion -- 4.3.2 Solvent Treatment -- 4.3.3 Gasification -- 4.3.4 Pyrolysis -- 4.4 Novel Techniques and Envisioned Product Streams: A New Perspective -- 4.5 Case Study: Yard Waste Management -- 4.5.1 Background of Yard Waste in Hong Kong -- 4.5.2 Conventional Yard Waste Reduction and Treatment Strategy -- 4.5.3 Novel Techniques and Strategies for Yard Waste Treatment -- 4.6 Conclusions and Future Trends -- 4.6 Acknowledgements -- 4.6 References -- Chapter 5 Valorisation of Woody Biomass -- 5.1 Generation of Woody Biomass -- 5.2 General Classification and Properties of Woods -- 5.3 Wood Chemistry -- 5.3.1 Cellulose -- 5.3.2 Hemicelluloses -- 5.3.3 Lignin -- 5.3.4 Extractives -- 5.4 Chemical Composition Analysis -- 5.4.1 Structural Carbohydrates and Lignin -- 5.4.2 Extractives -- 5.5 Pretreatment -- 5.6 Saccharification and Fermentation -- 5.7 New Functions of Wood Residues -- 5.7.1 Wood-Plastic Composite for Construction Purposes.
5.7.2 Cellulose Nanomaterials -- 5.7.3 Wood Extractives -- 5.8 Conclusions and Future Trends -- 5.8 Acknowledgement -- 5.8 References -- Chapter 6 Recovery of Nutrients and Transformations of Municipal/Domestic Food Waste -- 6.1 Introduction -- 6.2 Characteristics of Food Waste and its Supply Chain -- 6.2.1 Characteristics of Waste Generated from Food Industries -- 6.2.2 Food Waste Supply Chain -- 6.3 Recovery of Valuable Products from Anaerobic Digestion of Food Waste -- 6.3.1 Biogas -- 6.3.2 Digestate -- 6.4 Novel Approaches and Obtainable Products: Biotechnological Processes and Chemical Transformations -- 6.4.1 Chemical Transformations -- 6.4.2 Biotechnological Approaches -- 6.5 Case Study: Production of Methane via Anaerobic Digestion of Food Waste -- 6.5.1 Anaerobic Digestion -- 6.5.2 TEAM Digester for Domestic Food Waste Digestion -- 6.6 Conclusions and Future Trends -- 6.6 References -- Chapter 7 Bioconversion of Processing Waste from Agro‐Food Industries to Bioethanol: Creating a Sustainable and Circular Economy -- 7.1 Introduction -- 7.2 Bioconversion Technologies for Bioethanol Production -- 7.2.1 Ethanol Production from Starchy Feedstock (First‐Generation Bioethanol) -- 7.2.2 Ethanol from Lignocellulosic Biomass (Second‐Generation Bioethanol) -- 7.3 Use of Processing Waste to Produce Ethanol -- 7.3.1 Citrus Peel Waste (CPW) -- 7.3.2 Peel Residue Waste from Other Food Industries -- 7.3.3 Waste from the Brewing Industry -- 7.3.4 Other Processing Wastes -- 7.4 Use of Processing Waste to Enhance Ethanol Yields -- 7.4.1 Improving Fermentation of Dry Fractionated Corn -- 7.4.2 Processing of DDGS to Enhance Ethanol Yields -- 7.5 Conclusions and Future Trends -- 7.5 References -- Chapter 8 Challenges with Biomass Waste Valorisation -- 8.1 Introduction -- 8.2 The Pre‐Preparation Technologies of Biomass Waste.
8.2.1 "Cellulose‐First" Biorefinery Technologies -- 8.2.2 "Lignin‐First" Biorefinery Technologies -- 8.2.3 "Lignin and Hemicellulose‐First" Biorefinery Technologies -- 8.2.4 "Cellulose and Hemicellulose‐First" Biorefinery Technologies -- 8.3 Handling of Emerging Biomass Wastes by Newly Developed Techniques -- 8.3.1 Catalytic Chemistry Technologies -- 8.3.2 Thermochemical Conversion Technologies -- 8.3.3 Biochemical Technologies -- 8.3.4 Integration with Existing Technologies and Economic Viability -- 8.4 Transforming Biomass Waste to Cellulose by New Techniques -- 8.4.1 Cellulose Extraction or Purification Techniques from Biomass Waste -- 8.4.2 Cellulose Micro/Nanomerization Technologies -- 8.5 Transforming Biomass Waste to Lignin by New Technologies -- 8.6 Conclusions and Future Trends -- 8.6 Acknowledgements -- 8.6 References -- Chapter 9 Life cycle Approaches for Evaluating Textile Biovalorisation Processes: Sustainable Decision‐making in a Circular Economy -- 9.1 Introduction -- 9.2 Literature Review -- 9.2.1 Circular Economy and Sustainable Development -- 9.2.2 Textile Industry - Sustainability Issues and Recycling -- 9.3 Methods -- 9.3.1 Description of Environmental Assessment -- 9.3.2 Description of Social Assessment -- 9.4 Case Study -- 9.4.1 Recovery of PET Fiber from Cotton-Polyester Blended Textile Waste -- 9.4.2 System Description of the Biorecycling Method -- 9.4.3 Life Cycle Inventory -- 9.5 Results and Discussion -- 9.5.1 Environmental Sustainability of Bio‐based PET Fiber -- 9.5.2 Social and Economic Sustainability of Bio‐based PET Fiber -- 9.6 Conclusions and Future Trends -- 9.6 Acknowledgement -- 9.6 References -- Chapter 10 Circular Waste‐Based Biorefinery Development -- 10.1 Introduction -- 10.2 Transitioning from Current Linear to Stronger Circular Economy Models.
10.2.1 Integration of Circular Economy and Sustainable Development -- 10.2.2 Requirements for Transition to a Circular Economy -- 10.3 Case Study 1: Circular Textile Waste‐based Biorefinery for Production of Chemicals, Materials, and Fuels -- 10.3.1 Need for a Circular Textile Waste‐based Biorefinery -- 10.3.2 Circular Textile Biorefinery -- 10.4 Case Study 2: Circular Food Waste‐based Biorefinery for Production of Chemicals, Materials, and Fuels -- 10.4.1 Circular Bioconversion of Food Waste into Polyethylene Furanoate (PEF) -- 10.4.2 Circular Bioconversion of Food Waste into Biosurfactant -- 10.5 Conclusions and Future Trends -- 10.5 Acknowledgements -- 10.5 References -- Index -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.