ORPP logo
Image from Google Jackets

Periodic Hamiltonian Flows on Four Dimensional Manifolds.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 1999Copyright date: ©1999Edition: 1st edDescription: 1 online resource (87 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470402631
Subject(s): Genre/Form: Additional physical formats: Print version:: Periodic Hamiltonian Flows on Four Dimensional ManifoldsDDC classification:
  • 510 s;514/.74
LOC classification:
  • QA614.82 -- .K37 1999eb
Online resources:
Contents:
Intro -- Contents -- 1. Introduction -- 2. Graphs -- 2.1. The graph -- 2.2. Kähler toric varieties -- 2.3. Push-forward measures -- 3. Metrics -- 3.1. Gradient spheres -- 3.2. Dependence on the metric -- 4. Uniqueness: Graph determines space -- 4.1. Building an equivariant diffeomorphism that respects the moment maps -- 4.2. Building an isomorphism -- 5. Isolated fixed points implies toric variety -- 6. Blowing-up -- 6.1. Equivariant symplectic blow-ups and blow-downs -- 6.2. Blowing down to a minimal space -- 6.3. Minimal spaces -- 7. Completing the classification -- our spaces are Kähler -- 7.1. Algorithm -- Appendix A. Local normal forms -- Appendix B. Diffeomorphisms of the two-sphere -- Appendix C. Computing a Kähler cone -- References.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- 1. Introduction -- 2. Graphs -- 2.1. The graph -- 2.2. Kähler toric varieties -- 2.3. Push-forward measures -- 3. Metrics -- 3.1. Gradient spheres -- 3.2. Dependence on the metric -- 4. Uniqueness: Graph determines space -- 4.1. Building an equivariant diffeomorphism that respects the moment maps -- 4.2. Building an isomorphism -- 5. Isolated fixed points implies toric variety -- 6. Blowing-up -- 6.1. Equivariant symplectic blow-ups and blow-downs -- 6.2. Blowing down to a minimal space -- 6.3. Minimal spaces -- 7. Completing the classification -- our spaces are Kähler -- 7.1. Algorithm -- Appendix A. Local normal forms -- Appendix B. Diffeomorphisms of the two-sphere -- Appendix C. Computing a Kähler cone -- References.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.