ORPP logo
Image from Google Jackets

Iterative Design of Teaching-Learning Sequences : Introducing the Science of Materials in European Schools.

By: Contributor(s): Material type: TextTextPublisher: Dordrecht : Springer Netherlands, 2015Copyright date: ©2016Edition: 1st edDescription: 1 online resource (379 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789400778085
Subject(s): Genre/Form: Additional physical formats: Print version:: Iterative Design of Teaching-Learning SequencesDDC classification:
  • 507.104
LOC classification:
  • Q181-183.4
Online resources:
Contents:
Intro -- Contents -- Introduction -- References -- Part I: Theoretical Aspects -- Theoretical Issues Related to Designing and Developing Teaching-Learning Sequences -- 1 Introduction -- 2 Designing TLS: Grand Theories and Design Frameworks -- 3 Advancement in Designing Empirical TLS -- 4 Evaluation and Iterative Refinement of TLS -- 5 Conclusion -- References -- Pragmatic Design-Based Research - Designing as a Shared Activity of Teachers and Researches -- 1 Introduction -- 1.1 Pragmatism -- 2 Design-Based Research -- 2.1 Designing Generates an Educational Innovation -- 2.2 Design-Based Research Is an Iterative Process -- 2.3 Novel Knowledge -- 2.4 Aspects of Credibility -- 3 Discussion and Conclusions -- References -- Participatory Approaches to Curriculum Design From a Design Research Perspective -- 1 Introduction -- 2 Traditional Curriculum Innovation in Science Education: Forgetting that Teachers Matter -- 2.1 Why Do Teachers Matter? Innovation as Teacher Development -- 2.1.1 How Do Teachers Learn? A Situative and Socio-cultural View -- 2.2 Why Do Teachers Matter? Innovation as Curriculum Development that Needs Teachers -- 2.2.1 The Role of Research Knowledge in Curriculum Innovation -- 3 Design-Based Research, Research on Teaching Learning Sequences and the Participation of Teachers in Curriculum Design -- 3.1 Teachers' Participation in DBR and TLS Research Frameworks -- 3.2 Participatory Design Research: Epistemological Implications -- 3.3 Participatory Design Research: Practical Implications -- 4 A Route to Participatory Curriculum Design for the Design Research Approach: Ideas from the Community Framework -- 4.1 PLC as a Model for Participatory Approaches to Curriculum Design -- 4.2 The Role of Trust and Rhythms in Participatory Approaches to Curriculum Design -- 4.3 The Inquiry-Stance in Participatory Approaches to Curriculum Design.
4.4 Impact on Teacher Learning and Students' Results of Participatory Approaches to Curriculum Design -- 4.5 Sustainability and Scalability of Participatory Curriculum Design: The Need to Focus on Teacher Leadership -- 5 Tensions Between the Teacher's and Researcher's Agenda in a Participatory Approach to Design Research -- 6 Summary and Conclusions -- References -- Part II: Aspects of Materials Science and Their Educational Adaptation -- Materials Science: Trends, Material Properties and Educational Perspectives -- 1 Introduction: Terms and Terminology in Materials Science -- 2 Part A -- 2.1 History of Materials and Materials Science -- 2.2 Material Structure and Properties -- 2.2.1 Material Structure -- 2.2.2 Material Properties -- 2.2.2.1 Materials Composition and Density -- 2.2.2.2 Mechanical Properties -- 2.2.2.3 Thermal Properties -- 2.2.2.4 Electrical, Magnetic and Optical Properties -- 2.2.3 Structure and Properties -- 3 Part B -- 3.1 Education in Materials Science -- 3.1.1 Formal Education -- 3.1.2 University Level -- 3.1.3 Pre-university Level -- 3.1.4 Introducing Materials Science in Pre-university Level -- 3.2 Informal Education -- 3.2.1 Teaching Resources -- 4 Concluding Remarks -- References -- Integrating Science and Technology in School Practice Through the Educational Reconstruction of Contents -- 1 Introduction -- 2 Previous Attempts at Integrating Science and Technology -- 3 Main Relevant Aspects of the Nature of Science in the Perspective of Integrating Science and Technology -- 4 The Nature of Technology: Some Uncharted Aspects -- 5 A Framework for Integrating Science and Technology from the Content Knowledge Viewpoint -- 5.1 The ER Model -- 5.2 Use of the ER Model to Integrate Science and Technology -- 6 Contextualizing the Science and Technology Integration in Teaching-Learning Sequences -- 7 Conclusions and Implications.
Appendix: Outline of an Example Which Uses Properties of Materials as Suitable Field to Integrate Science and Technology -- Electrical Properties of Materials -- References -- Part III: Case Studies -- The Process of Iterative Development of a Teaching/Learning Sequence on Acoustic Properties of Materials -- 1 Introduction -- 2 Context -- 3 Design of a Teaching/Learning Sequence on Acoustic Properties of Materials -- 3.1 Theoretical Framework for the Design of the Sequence -- 3.1.1 Elicitation of Design Principles -- 3.1.2 Subject Matter Clarification and Analysis of Students' Learning Needs -- 3.1.2.1 Analysis of the Subject Matter -- 3.1.2.2 Review of Previous Research on Students' Conceptions of Sound -- Students' Conceptions of the Nature and Propagation of Sound -- Students' Conceptions of the Interaction of Sound with Matter -- 3.1.2.3 Preliminary Research Study on Students' Conceptions of Sound Attenuation and Acoustic Properties of Materials -- Students' Conceptions of the Phenomenon of Sound Attenuation -- Students' Conceptions of Acoustic Properties of Materials -- 3.2 The Sequence of Teaching and Learning Activities as a Product of the Design Process -- 4 Development and Refinement of the Sequence -- 5 Implementation(s) of the Sequence -- 6 Research Questions and Methods -- 6.1 Research Questions/Aims -- 6.2 Research Methodology -- 6.3 Data Collection -- 6.4 Data Analysis -- 7 Results -- 7.1 On Students' Needs or Difficulties -- 7.1.1 Types of Students' Needs or Difficulties -- 7.1.1.1 Student's Needs or Difficulties Related to Metacognition -- 7.1.1.2 Student's Needs or Difficulties Related to Images -- 7.1.1.3 Student's Needs or Difficulties Related to Concepts or Conceptual Models -- 7.1.1.4 Student's Needs or Difficulties Related to Experiments.
7.1.2 Student's Needs or Difficulties Identified throughout the Implementations of Consecutive Versions of the Sequence -- 7.2 On the Problematic Aspects of the Sequence and the Modifications Introduced -- 7.2.1 Types of Modifications Introduced in Consecutive Versions of the Sequence -- 7.2.2 Relationship between Students' Needs or Difficulties and Changes Introduced in the Sequence -- 7.2.2.1 Changes Introduced in the Sequence to Tackle Students' Needs or Difficulties Related to Metacognition -- 7.2.2.2 Changes Introduced in the Sequence to Tackle Students' Needs or Difficulties Related to Images -- 7.2.2.3 Changes Introduced in the Sequence to Tackle Students' Needs or Difficulties Related to Concepts or Conceptual Models -- 7.2.2.4 Changes Introduced in the Sequence to Tackle Students' Needs or Difficulties Related to Experiments -- 7.2.2.5 Changes Introduced in the Sequence to Tackle Other Needs or Difficulties of Students -- 7.3 On the "Driving Forces" or Critical Reasons for Change -- 7.3.1 Enhancing the Validity of the Designed Sequence by Readapting the Activities to the Design Principles (DF1) -- 7.3.2 Enhancing the Practicality of the Designed Sequence by Tackling Teachers' Needs or Difficulties (DF2) -- 7.3.3 Enhancing the Efficacy of the Designed Sequence by Tackling Students' Needs or Difficulties (DF3) -- 8 Discussion and Conclusions -- 9 Recommendations -- Appendix - Outline of the Evolution of the Structure of the TLS on APM after Consecutive Refinements -- References -- The Evolutionary Refinement Process of a Teaching-Learning Sequence for Introducing Inquiry Aspects and Density as Materials' Property in Floating/Sinking Phenomena -- 1 Introduction -- 1.1 Density, A Property for Interpreting F/S Phenomena -- 1.2 Inquiry Orientations, Control of Variables Strategy and Models Perspective -- 2 The Context of the Study.
3 Design of the TLS -- 4 Development of the TLS -- 5 Implementations of the TLS -- 6 Research Methodology -- 7 Results -- 7.1 Reasoning Concerning F/S Phenomena -- 7.1.1 F/S, Connection between Real and Simulated Experiments Interpretations -- 7.2 Density -- 7.2.1 Density, Emphasis given to the Distinction between Homogeneous and Composite Objects -- 7.3 Inquiry Skills - Control of Variables Strategy (CVS) -- 7.3.1 CVS, From Demo and Guided, to More Open Inquiry Approach -- 7.3.2 CVS, Emphasis on the Drawing a Conclusion Procedure -- 7.3.3 CVS, Changes in the Order of the Focal Variables -- 7.4 Models and Modeling -- 7.4.1 Models, Gradual Introduction of Models -- 7.4.2 Models, Changes in the Activity for the Generalization of the Rule for Predicting F/S -- 7.5 Indicative Learning Results From the First and the Second Implementations -- 8 Discussion and Conclusions -- 9 Recommendations -- References -- Design and Development of Teaching-Learning Sequence (TLS) Materials Around Us: Description of an Iterative Process -- 1 Introduction -- 1.1 Quality Criteria for a DBR Project -- 1.2 Enhancing Motivation and Learning of Materials with an Inquiry-Based Out-of-School Setting -- 2 Context: Finnish Science Education Context -- 3 Designing a TLS on the Properties of Materials -- 3.1 Materials Science Content -- 4 Development and Refinement of the TLS -- 5 Implementations of the TLS -- 5.1 Pilot Cycle: Okmetic Plc -- 5.2 First Cycle: Vaisala Plc -- 5.3 Second Cycle: Metso Automation Plc -- 5.4 Final Trial -- 6 Research Questions and Methods -- 6.1 Research Questions -- 6.2 Data Collection -- 6.3 Data Analysis -- 7 Results -- 7.1 Results of Teachers' Interviews -- 7.2 Results of the ESIAQ -- 7.3 Results from Students Interviews -- 7.4 External Evaluators Comments -- 7.5 Re-design Decisions -- 8 Discussion and Conclusions -- 9 Recommendations.
Appendix 1: ESIAQ.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Introduction -- References -- Part I: Theoretical Aspects -- Theoretical Issues Related to Designing and Developing Teaching-Learning Sequences -- 1 Introduction -- 2 Designing TLS: Grand Theories and Design Frameworks -- 3 Advancement in Designing Empirical TLS -- 4 Evaluation and Iterative Refinement of TLS -- 5 Conclusion -- References -- Pragmatic Design-Based Research - Designing as a Shared Activity of Teachers and Researches -- 1 Introduction -- 1.1 Pragmatism -- 2 Design-Based Research -- 2.1 Designing Generates an Educational Innovation -- 2.2 Design-Based Research Is an Iterative Process -- 2.3 Novel Knowledge -- 2.4 Aspects of Credibility -- 3 Discussion and Conclusions -- References -- Participatory Approaches to Curriculum Design From a Design Research Perspective -- 1 Introduction -- 2 Traditional Curriculum Innovation in Science Education: Forgetting that Teachers Matter -- 2.1 Why Do Teachers Matter? Innovation as Teacher Development -- 2.1.1 How Do Teachers Learn? A Situative and Socio-cultural View -- 2.2 Why Do Teachers Matter? Innovation as Curriculum Development that Needs Teachers -- 2.2.1 The Role of Research Knowledge in Curriculum Innovation -- 3 Design-Based Research, Research on Teaching Learning Sequences and the Participation of Teachers in Curriculum Design -- 3.1 Teachers' Participation in DBR and TLS Research Frameworks -- 3.2 Participatory Design Research: Epistemological Implications -- 3.3 Participatory Design Research: Practical Implications -- 4 A Route to Participatory Curriculum Design for the Design Research Approach: Ideas from the Community Framework -- 4.1 PLC as a Model for Participatory Approaches to Curriculum Design -- 4.2 The Role of Trust and Rhythms in Participatory Approaches to Curriculum Design -- 4.3 The Inquiry-Stance in Participatory Approaches to Curriculum Design.

4.4 Impact on Teacher Learning and Students' Results of Participatory Approaches to Curriculum Design -- 4.5 Sustainability and Scalability of Participatory Curriculum Design: The Need to Focus on Teacher Leadership -- 5 Tensions Between the Teacher's and Researcher's Agenda in a Participatory Approach to Design Research -- 6 Summary and Conclusions -- References -- Part II: Aspects of Materials Science and Their Educational Adaptation -- Materials Science: Trends, Material Properties and Educational Perspectives -- 1 Introduction: Terms and Terminology in Materials Science -- 2 Part A -- 2.1 History of Materials and Materials Science -- 2.2 Material Structure and Properties -- 2.2.1 Material Structure -- 2.2.2 Material Properties -- 2.2.2.1 Materials Composition and Density -- 2.2.2.2 Mechanical Properties -- 2.2.2.3 Thermal Properties -- 2.2.2.4 Electrical, Magnetic and Optical Properties -- 2.2.3 Structure and Properties -- 3 Part B -- 3.1 Education in Materials Science -- 3.1.1 Formal Education -- 3.1.2 University Level -- 3.1.3 Pre-university Level -- 3.1.4 Introducing Materials Science in Pre-university Level -- 3.2 Informal Education -- 3.2.1 Teaching Resources -- 4 Concluding Remarks -- References -- Integrating Science and Technology in School Practice Through the Educational Reconstruction of Contents -- 1 Introduction -- 2 Previous Attempts at Integrating Science and Technology -- 3 Main Relevant Aspects of the Nature of Science in the Perspective of Integrating Science and Technology -- 4 The Nature of Technology: Some Uncharted Aspects -- 5 A Framework for Integrating Science and Technology from the Content Knowledge Viewpoint -- 5.1 The ER Model -- 5.2 Use of the ER Model to Integrate Science and Technology -- 6 Contextualizing the Science and Technology Integration in Teaching-Learning Sequences -- 7 Conclusions and Implications.

Appendix: Outline of an Example Which Uses Properties of Materials as Suitable Field to Integrate Science and Technology -- Electrical Properties of Materials -- References -- Part III: Case Studies -- The Process of Iterative Development of a Teaching/Learning Sequence on Acoustic Properties of Materials -- 1 Introduction -- 2 Context -- 3 Design of a Teaching/Learning Sequence on Acoustic Properties of Materials -- 3.1 Theoretical Framework for the Design of the Sequence -- 3.1.1 Elicitation of Design Principles -- 3.1.2 Subject Matter Clarification and Analysis of Students' Learning Needs -- 3.1.2.1 Analysis of the Subject Matter -- 3.1.2.2 Review of Previous Research on Students' Conceptions of Sound -- Students' Conceptions of the Nature and Propagation of Sound -- Students' Conceptions of the Interaction of Sound with Matter -- 3.1.2.3 Preliminary Research Study on Students' Conceptions of Sound Attenuation and Acoustic Properties of Materials -- Students' Conceptions of the Phenomenon of Sound Attenuation -- Students' Conceptions of Acoustic Properties of Materials -- 3.2 The Sequence of Teaching and Learning Activities as a Product of the Design Process -- 4 Development and Refinement of the Sequence -- 5 Implementation(s) of the Sequence -- 6 Research Questions and Methods -- 6.1 Research Questions/Aims -- 6.2 Research Methodology -- 6.3 Data Collection -- 6.4 Data Analysis -- 7 Results -- 7.1 On Students' Needs or Difficulties -- 7.1.1 Types of Students' Needs or Difficulties -- 7.1.1.1 Student's Needs or Difficulties Related to Metacognition -- 7.1.1.2 Student's Needs or Difficulties Related to Images -- 7.1.1.3 Student's Needs or Difficulties Related to Concepts or Conceptual Models -- 7.1.1.4 Student's Needs or Difficulties Related to Experiments.

7.1.2 Student's Needs or Difficulties Identified throughout the Implementations of Consecutive Versions of the Sequence -- 7.2 On the Problematic Aspects of the Sequence and the Modifications Introduced -- 7.2.1 Types of Modifications Introduced in Consecutive Versions of the Sequence -- 7.2.2 Relationship between Students' Needs or Difficulties and Changes Introduced in the Sequence -- 7.2.2.1 Changes Introduced in the Sequence to Tackle Students' Needs or Difficulties Related to Metacognition -- 7.2.2.2 Changes Introduced in the Sequence to Tackle Students' Needs or Difficulties Related to Images -- 7.2.2.3 Changes Introduced in the Sequence to Tackle Students' Needs or Difficulties Related to Concepts or Conceptual Models -- 7.2.2.4 Changes Introduced in the Sequence to Tackle Students' Needs or Difficulties Related to Experiments -- 7.2.2.5 Changes Introduced in the Sequence to Tackle Other Needs or Difficulties of Students -- 7.3 On the "Driving Forces" or Critical Reasons for Change -- 7.3.1 Enhancing the Validity of the Designed Sequence by Readapting the Activities to the Design Principles (DF1) -- 7.3.2 Enhancing the Practicality of the Designed Sequence by Tackling Teachers' Needs or Difficulties (DF2) -- 7.3.3 Enhancing the Efficacy of the Designed Sequence by Tackling Students' Needs or Difficulties (DF3) -- 8 Discussion and Conclusions -- 9 Recommendations -- Appendix - Outline of the Evolution of the Structure of the TLS on APM after Consecutive Refinements -- References -- The Evolutionary Refinement Process of a Teaching-Learning Sequence for Introducing Inquiry Aspects and Density as Materials' Property in Floating/Sinking Phenomena -- 1 Introduction -- 1.1 Density, A Property for Interpreting F/S Phenomena -- 1.2 Inquiry Orientations, Control of Variables Strategy and Models Perspective -- 2 The Context of the Study.

3 Design of the TLS -- 4 Development of the TLS -- 5 Implementations of the TLS -- 6 Research Methodology -- 7 Results -- 7.1 Reasoning Concerning F/S Phenomena -- 7.1.1 F/S, Connection between Real and Simulated Experiments Interpretations -- 7.2 Density -- 7.2.1 Density, Emphasis given to the Distinction between Homogeneous and Composite Objects -- 7.3 Inquiry Skills - Control of Variables Strategy (CVS) -- 7.3.1 CVS, From Demo and Guided, to More Open Inquiry Approach -- 7.3.2 CVS, Emphasis on the Drawing a Conclusion Procedure -- 7.3.3 CVS, Changes in the Order of the Focal Variables -- 7.4 Models and Modeling -- 7.4.1 Models, Gradual Introduction of Models -- 7.4.2 Models, Changes in the Activity for the Generalization of the Rule for Predicting F/S -- 7.5 Indicative Learning Results From the First and the Second Implementations -- 8 Discussion and Conclusions -- 9 Recommendations -- References -- Design and Development of Teaching-Learning Sequence (TLS) Materials Around Us: Description of an Iterative Process -- 1 Introduction -- 1.1 Quality Criteria for a DBR Project -- 1.2 Enhancing Motivation and Learning of Materials with an Inquiry-Based Out-of-School Setting -- 2 Context: Finnish Science Education Context -- 3 Designing a TLS on the Properties of Materials -- 3.1 Materials Science Content -- 4 Development and Refinement of the TLS -- 5 Implementations of the TLS -- 5.1 Pilot Cycle: Okmetic Plc -- 5.2 First Cycle: Vaisala Plc -- 5.3 Second Cycle: Metso Automation Plc -- 5.4 Final Trial -- 6 Research Questions and Methods -- 6.1 Research Questions -- 6.2 Data Collection -- 6.3 Data Analysis -- 7 Results -- 7.1 Results of Teachers' Interviews -- 7.2 Results of the ESIAQ -- 7.3 Results from Students Interviews -- 7.4 External Evaluators Comments -- 7.5 Re-design Decisions -- 8 Discussion and Conclusions -- 9 Recommendations.

Appendix 1: ESIAQ.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.