Resonant MEMS : Fundamentals, Implementation, and Application.
Material type:
- text
- computer
- online resource
- 9783527676354
- TK7871.15.F5 .B384 2015
Cover -- Title Page -- Copyright -- Contents -- Series editor's preface -- Preface -- About the Volume Editors -- List of Contributors -- Part I: Fundamentals -- Chapter 1 Fundamental Theory of Resonant MEMS Devices -- 1.1 Introduction -- 1.2 Nomenclature -- 1.3 Single-Degree-of-Freedom (SDOF) Systems -- 1.3.1 Free Vibration -- 1.3.2 Harmonically Forced Vibration -- 1.3.3 Contributions to Quality Factor from Multiple Sources -- 1.4 Continuous Systems Modeling: Microcantilever Beam Example -- 1.4.1 Modeling Assumptions -- 1.4.2 Boundary Value Problem for a Vibrating Microcantilever -- 1.4.3 Free-Vibration Response of Microcantilever -- 1.4.4 Steady-State Response of a Harmonically Excited Microcantilever -- 1.5 Formulas for Undamped Natural Frequencies -- 1.5.1 Simple Deformations (Axial, Bending, Twisting) of 1D Structural Members: Cantilevers and Doubly Clamped Members ("Bridges") -- 1.5.1.1 Axial Vibrations (Along x-Axis) -- 1.5.1.2 Torsional Vibrations (Based on h≪b) (Twist About x-Axis) -- 1.5.1.3 Flexural (Bending) Vibrations -- 1.5.2 Transverse Deflection of 2D Structures: Circular and Square Plates with Free and Clamped Supports -- 1.5.3 Transverse Deflection of 1D Membrane Structures ("Strings") -- 1.5.4 Transverse Deflection of 2D Membrane Structures: Circular and Square Membranes under Uniform Tension and Supported along Periphery -- 1.5.5 In-Plane Deformation of Slender Circular Rings -- 1.5.5.1 Extensional Modes -- 1.5.5.2 In-Plane Bending Modes -- 1.6 Summary -- Acknowledgment -- References -- Chapter 2 Frequency Response of Cantilever Beams Immersed in Viscous Fluids -- 2.1 Introduction -- 2.2 Low Order Modes -- 2.2.1 Flexural Oscillation -- 2.2.2 Torsional Oscillation -- 2.2.3 In-Plane Flexural Oscillation -- 2.2.4 Extensional Oscillation -- 2.3 Arbitrary Mode Order -- 2.3.1 Incompressible Flows -- 2.3.2 Compressible Flows.
2.3.2.1 Scaling Analysis -- 2.3.2.2 Numerical Results -- References -- Chapter 3 Damping in Resonant MEMS -- 3.1 Introduction -- 3.2 Air Damping -- 3.3 Surface Damping -- 3.4 Anchor Damping -- 3.5 Electrical Damping -- 3.6 Thermoelastic Dissipation (TED) -- 3.7 Akhiezer Effect (AKE) -- References -- Chapter 4 Parametrically Excited Micro- and Nanosystems -- 4.1 Introduction -- 4.2 Sources of Parametric Excitation in MEMS and NEMS -- 4.2.1 Parametric Excitation via Electrostatic Transduction -- 4.2.2 Other Sources of Parametric Excitation -- 4.3 Modeling the Underlying Dynamics-Variants of the Mathieu Equation -- 4.4 Perturbation Analysis -- 4.5 Linear, Steady-State Behaviors -- 4.6 Sources of Nonlinearity and Nonlinear Steady-State Behaviors -- 4.7 Complex Dynamics in Parametrically Excited Micro/Nanosystems -- 4.8 Combined Parametric and Direct Excitations -- 4.9 Select Applications -- 4.9.1 Resonant Mass Sensing -- 4.9.2 Inertial Sensing -- 4.9.3 Micromirror Actuation -- 4.9.4 Bifurcation Control -- 4.10 Some Parting Thoughts -- Acknowledgment -- References -- Chapter 5 Finite Element Modeling of Resonators -- 5.1 Introduction to Finite Element Analysis -- 5.1.1 Mathematical Fundamentals -- 5.1.1.1 Static Problems -- 5.1.1.2 Dynamic Problems (Modal Analysis) -- 5.1.2 Practical Implementation -- 5.1.2.1 Set Up -- 5.1.2.2 Processing -- 5.1.2.3 Post-processing -- 5.2 Application of FEA in MEMS Resonator Design -- 5.2.1 Modal Analysis -- 5.2.1.1 Mode Shape Analysis for Design Optimization -- 5.2.1.2 Modeling Process-Induced Variation -- 5.2.2 Loss Analysis -- 5.2.2.1 Anchor Loss -- 5.2.2.2 Thermoelastic Damping -- 5.2.3 Frequency Response Analysis -- 5.2.3.1 Spurious Mode Identification and Rejection -- 5.2.3.2 Filter Design -- 5.3 Summary -- References -- Part II: Implementation -- Chapter 6 Capacitive Resonators -- 6.1 Introduction.
6.2 Capacitive Transduction -- 6.3 Electromechanical Actuation -- 6.3.1 Electromechanical Force Derivation -- 6.3.2 Voltage Dependent Force Components -- 6.4 Capacitive Sensing and Motional Capacitor Topologies -- 6.4.1 Parallel-Moving Plates -- 6.4.2 Perpendicular Moving Plates -- 6.4.3 Electrostatic Spring Softening and Snap-In -- 6.4.4 Angular Moving Plates -- 6.5 Electrical Isolation -- 6.6 Capacitive Resonator Circuit Models -- 6.7 Capacitive Interfaces -- 6.7.1 Transimpedance Amplifier -- 6.7.2 High-Impedance Voltage Detection -- 6.7.3 Switched-Capacitor Detection -- 6.8 Conclusion -- Acknowledgment -- References -- Chapter 7 Piezoelectric Resonant MEMS -- 7.1 Introduction to Piezoelectric Resonant MEMS -- 7.2 Fundamentals of Piezoelectricity and Piezoelectric Resonators -- 7.3 Thin Film Piezoelectric Materials for Resonant MEMS -- 7.4 Equivalent Electrical Circuit of Piezoelectric Resonant MEMS -- 7.4.1 One-Port Piezoelectric Resonators -- 7.4.2 Two-Port Piezoelectric Resonators -- 7.4.3 Resonator Figure of Merit -- 7.5 Examples of Piezoelectric Resonant MEMS: Vibrations in Beams, Membranes, and Plates -- 7.5.1 Flexural Vibrations -- 7.5.2 Width-Extensional Vibrations -- 7.5.3 Thickness-Extensional and Shear Vibrations -- 7.6 Conclusions -- References -- Chapter 8 Electrothermal Excitation of Resonant MEMS -- 8.1 Basic Principles -- 8.1.1 Fundamental Equations for Electro-Thermo-Mechanical Transduction -- 8.1.2 Time Constants and Frequency Dependencies -- 8.2 Actuator Implementations -- 8.2.1 Thin-Film/Surface Actuators -- 8.2.2 Bulk Actuators -- 8.3 Piezoresistive Sensing -- 8.3.1 Fundamental Equations for Piezoresistive Sensing -- 8.3.2 Piezoresistor Implementations -- 8.3.3 Self-Sustained Thermal-Piezoresistive Oscillators -- 8.4 Modeling and Optimization of Single-Port Thermal-Piezoresistive Resonators.
8.4.1 Thermo-Electro-Mechanical Modeling -- 8.4.2 Resonator Equivalent Electrical Circuit and Optimization -- 8.5 Examples of Thermally Actuated Resonant MEMS -- References -- Chapter 9 Nanoelectromechanical Systems (NEMS) -- 9.1 Introduction -- 9.1.1 Fundamental Studies -- 9.1.2 Transduction at the Nanoscale -- 9.1.3 Materials, Fabrication, and System Integration -- 9.1.4 Electronics -- 9.1.5 Nonlinear MEMS/NEMS Applications -- 9.2 Carbon-Based NEMS -- 9.3 Toward Functional Bio-NEMS -- 9.3.1 NEMS-Based Energy Harvesting: an Emerging Field -- 9.4 Summary and Outlook -- References -- Chapter 10 Organic Resonant MEMS Devices -- 10.1 Introduction -- 10.2 Device Designs -- 10.2.1 Conductive Polymer with Electrostatic Actuation -- 10.2.2 Dielectric Polymer with Polarization Force Actuation -- 10.2.3 Superparamagnetic Nanoparticle Composite with Magnetic Actuation -- 10.2.4 Metallized Polymer with Lorentz Force Actuation -- 10.3 Quality Factor of Polymeric Micromechanical Resonators -- 10.3.1 Quality Factor in Viscous Environment -- 10.3.2 Quality Factor of Relaxed Resonators in Vacuum -- 10.3.3 Quality Factor of Unrelaxed Resonators in Vacuum -- 10.4 Applications -- 10.4.1 Humidity Sensor -- 10.4.2 Vibrational Energy Harvesting -- 10.4.3 Artificial Cochlea -- References -- Chapter 11 Devices with Embedded Channels -- 11.1 Introduction -- 11.2 Theory -- 11.2.1 Effects of Fluid Density and Flow -- 11.2.2 Effects of Viscosity on the Quality Factor -- 11.2.3 Effect of Surface Reactions -- 11.2.4 Single Particle Measurements -- 11.3 Device Technology -- 11.3.1 Fabrication -- 11.3.2 Packaging Considerations -- 11.4 Applications -- 11.4.1 Measurements of Fluid Density and Mass Flow -- 11.4.2 Single Particle and Single Cell Measurements -- 11.4.3 Surface-Based Measurements -- 11.5 Conclusion -- References -- Chapter 12 Hermetic Packaging for Resonant MEMS.
12.1 Introduction -- 12.2 Overview of Packaging Types -- 12.3 Die-Level Vacuum-Can Packaging -- 12.4 Wafer Bonding for Device Packaging -- 12.5 Thin Film Encapsulation-Based Packaging -- 12.6 Getters -- 12.7 The "Stanford epi-Seal Process" for Packaging of MEMS Resonators -- 12.8 Conclusion -- References -- Chapter 13 Compensation, Tuning, and Trimming of MEMS Resonators -- 13.1 Introduction -- 13.2 Compensation Techniques in MEMS Resonators -- 13.2.1 Compensation for Thermal Effects -- 13.2.1.1 Engineering the Geometry -- 13.2.1.2 Doping -- 13.2.1.3 Composite Resonators -- 13.2.2 Compensation for Manufacturing Uncertainties -- 13.2.3 Compensation and Control of Quality Factor -- 13.2.4 Compensation for Polarization Voltage -- 13.3 Tuning Methods in MEMS Resonators -- 13.3.1 Device Level Tuning -- 13.3.1.1 Electrostatic Tuning -- 13.3.1.2 Thermal Tuning -- 13.3.1.3 Piezoelectric Tuning -- 13.3.2 System-Level Tuning -- 13.4 Trimming Methods -- References -- Part III: Application -- Chapter 14 MEMS Inertial Sensors -- 14.1 Introduction -- 14.2 Accelerometers -- 14.2.1 Principles of Operation -- 14.2.2 Quasi-Static Accelerometers -- 14.2.2.1 Squeeze-Film Damping -- 14.2.2.2 Electromechanical Transduction in Accelerometers -- 14.2.2.3 Mechanical Noise in Accelerometers -- 14.2.3 Resonant Accelerometers -- 14.2.3.1 Electrostatic Spring-Softening -- 14.2.3.2 Acceleration Sensitivity in Resonant Accelerometers -- 14.3 Gyroscopes -- 14.3.1 Principles of Operation -- 14.3.1.1 Vibratory Gyroscopes -- 14.3.1.2 Mode-Split versus Mode-Matched Gyroscopes -- 14.3.2 Bulk-Acoustic Wave (BAW) Gyroscopes -- 14.3.2.1 Angular Gain -- 14.3.2.2 Zero-Rate Output -- 14.3.2.3 ZRO Cancelation -- 14.3.2.4 Electromechanical Transduction in Gyroscopes -- 14.3.2.5 Electrostatic Mode Matching and Mode Alignment -- 14.3.3 Mechanical Noise in Mode-Matched Gyroscopes.
14.4 Multi-degree-of-Freedom Inertial Measurement Units.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.