ORPP logo
Image from Google Jackets

Analysis and Design of Machine Elements.

By: Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2019Copyright date: ©2019Edition: 1st edDescription: 1 online resource (457 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119276098
Subject(s): Genre/Form: Additional physical formats: Print version:: Analysis and Design of Machine ElementsLOC classification:
  • TJ230 .J536 2019
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Companion Website -- Part I Fundamentals of Design and Strength Analysis -- Chapter 1 An Overview of Machine Design -- 1.1 Introduction -- 1.1.1 Machines and Machine Elements -- 1.1.2 The Scope of Machine Design -- 1.2 Machine Design -- 1.2.1 Machine Design Considerations -- 1.2.2 Machine Design Process -- 1.3 Machine Element Design -- 1.3.1 Machine Element Design Considerations -- 1.3.2 Common Failure Modes in Machine Elements -- 1.3.3 Design Criteria -- 1.3.3.1 Strength Criteria -- 1.3.3.2 Rigidity Criteria -- 1.3.3.3 Life Criteria -- 1.3.3.4 Wear Criteria -- 1.3.4 Machine Element Design Process -- 1.4 Materials and Their Properties -- 1.4.1 Types of Materials -- 1.4.1.1 Steels and Alloys -- 1.4.1.2 Cast Irons and Cast Steels -- 1.4.1.3 Nonferrous Alloys -- 1.4.1.4 Polymers -- 1.4.1.5 Composite Materials -- 1.4.2 Material Properties -- 1.4.3 Heat Treatments -- 1.4.4 Material Selection -- 1.5 Unit Systems -- 1.6 Standards and Codes -- References -- Problems -- Chapter 2 Strength of Machine Elements -- 2.1 Fluctuating Loads and Stresses -- 2.1.1 Service Factors and Design Loads -- 2.1.2 Types of Loads -- 2.1.3 Types of Stresses -- 2.1.3.1 Static Stress -- 2.1.3.2 Completely Reversed Stress -- 2.1.3.3 Repeated Stress -- 2.1.3.4 Fluctuating Stress -- 2.2 Static Strength -- 2.2.1 Static Strength for Uniaxial Stresses -- 2.2.2 Static Strength for Combined Stresses -- 2.2.2.1 Maximum Shear Stress Theory -- 2.2.2.2 Maximum Distortion Energy Theory -- 2.3 Fatigue Strength -- 2.3.1 The Nature of Fatigue -- 2.3.2 Stress‐Life Diagrams -- 2.3.3 Endurance Limit Diagrams -- 2.3.3.1 The Endurance Limit Diagram of a Material -- 2.3.3.2 The Endurance Limit Diagram of an Element -- 2.3.4 Fatigue Strength for Uniaxial Stresses with Constant Amplitude.
2.3.5 Fatigue Strength for Uniaxial Stresses with Variable Amplitude -- 2.3.5.1 Linear Cumulative Damage Rule (Miner's Rule) -- 2.3.5.2 Prediction of Cumulative Fatigue Damage -- 2.3.6 Fatigue Strength for Combined Stresses with Constant Amplitude -- 2.3.7 Measures to Improve Fatigue Strength -- 2.3.8 Examples of Strength Analyses -- 2.4 Contact Strength -- 2.4.1 Hertzian Contact Stresses -- 2.4.2 Surface Fatigue Failure -- References -- Problems -- Part II Design Applications -- Chapter 3 Detachable Joints and Fastening Methods -- 3.1 Introduction -- 3.1.1 Applications, Characteristics and Structures -- 3.1.2 Selection of Fastening Methods -- 3.2 Screw Threads -- 3.2.1 Types of Screw Threads -- 3.2.2 Standards and Terminology -- 3.3 Threaded Fastening Methods -- 3.3.1 Types of Threaded Fastening Methods -- 3.3.2 Threaded Fasteners -- 3.3.3 Tightening Torque and Preloading -- 3.3.4 Fastener Loosening and Locking -- 3.4 Force Analysis of Multiply Bolted Joints -- 3.4.1 Multiply Bolted Joints Subjected to Symmetric Transverse Loads -- 3.4.2 Multiply Bolted Joints Subjected to a Torque -- 3.4.3 Multiply Bolted Joints Subjected to a Symmetric Axial Load -- 3.4.4 Multiply Bolted Joints Subjected to an Overturning Moment -- 3.5 Strength Analysis -- 3.5.1 Potential Failure Modes -- 3.5.2 Strength Analysis for Shear Bolts -- 3.5.3 Strength Analysis for Tension Bolts -- 3.5.3.1 Tension Bolts Subjected to Axial Loads Only -- 3.5.3.2 Preloaded Tension Bolts Subjected to Transverse Loads -- 3.5.3.3 Preloaded Tension Bolts Subjected to Combined Preload and Static Axial Loads -- 3.5.3.4 Preloaded Tension Bolts Subjected to Combined Preload and Variable Axial Loads -- 3.5.4 Measures to Improve Fatigue Strength of Bolted Joints -- 3.6 Design of Bolted Joints -- 3.6.1 Introduction -- 3.6.2 Materials and Allowable Stresses -- 3.6.3 Design Criteria.
3.6.4 Design Procedure and Guidelines -- 3.6.5 Structural Design -- 3.6.6 Design Cases -- References -- Problems -- Chapter 4 Detachable Fastenings for Shaft and Hub -- 4.1 Keys -- 4.1.1 Applications, Characteristics and Structure -- 4.1.2 Types of Keys -- 4.1.3 Strength Analysis -- 4.2 Splines -- 4.3 Pins -- References -- Problems -- Chapter 5 Permanent Connections -- 5.1 Riveting -- 5.1.1 Applications, Characteristics and Structure -- 5.1.2 Types of Rivets -- 5.1.3 Strength Analysis -- 5.1.4 Design of Riveted Joints -- 5.2 Welding -- 5.2.1 Applications, Characteristics and Structure -- 5.2.2 Types of Welded Joints and Types of Welds -- 5.2.3 Strength Analysis -- 5.2.3.1 Butt Welds -- 5.2.3.2 Fillet Welds -- 5.2.4 Design of Welded Joints -- 5.3 Brazing, Soldering and Adhesive Bonding -- 5.3.1 Applications, Characteristics and Structure -- 5.3.2 Types of Adhesive and Their Selection -- 5.3.3 Analysis and Design of Adhesive Joints -- References -- Problems -- Chapter 6 Belt Drives -- 6.1 Introduction -- 6.1.1 Applications, Characteristics and Structures -- 6.1.2 Types of Belts -- 6.1.3 V‐Belts -- 6.1.3.1 Terminology and Dimensions of V‐Belts -- 6.1.3.2 Types of V‐Belts -- 6.1.3.3 V‐Belt Construction -- 6.2 Working Condition Analysis -- 6.2.1 Geometrical Relationships in Belt Drives -- 6.2.2 Force Analysis -- 6.2.2.1 Force Analysis of an Element of Belt -- 6.2.2.2 Relations Between Tight Tension F1, Slack Tension F2, Initial Tension F0 and Effective Tension Fe -- 6.2.2.3 Critical or Maximum Effective Tension, Fec -- 6.2.2.4 Centrifugal Tension, Fc -- 6.2.3 Kinematic Analysis -- 6.2.3.1 Elastic Creep -- 6.2.3.2 Slippage of Belts -- 6.2.3.3 Speed Ratio -- 6.2.4 Stress Analysis -- 6.2.4.1 Tensile Stress in Tight Side, σ1, and Slack Side, σ2 -- 6.2.4.2 Centrifugal Stress, σc -- 6.2.4.3 Bending Stress, σb -- 6.2.5 Potential Failure Modes.
6.3 Power Transmission Capacities -- 6.3.1 The Maximum Effective Tension -- 6.3.2 Power Transmission Capacity of a Single V‐Belt -- 6.3.2.1 The Basic Power Rating of a Single Standard V‐Belt, P0 -- 6.3.2.2 The Actual Power Rating of a Single V‐Belt, Pr -- 6.4 Design of Belt Drives -- 6.4.1 Introduction -- 6.4.2 Design Criteria -- 6.4.3 Design Procedure and Guidelines -- 6.4.3.1 Compute Design Power, Pca -- 6.4.3.2 Specify Suitable Belt Types -- 6.4.3.3 Determine the Sheave Size -- 6.4.3.4 Confirm the Centre Distance, a and Belt Datum Length, Ld -- 6.4.3.5 Compute Contact Angle on the Small Sheave, α1 -- 6.4.3.6 Compute the Number of Belts Required to Carry the Design Power -- 6.4.3.7 Decide Initial Tension, F0 -- 6.4.3.8 Compute the Force Acting on the Sheave Shaft, FQ -- 6.4.4 Design of V‐Belt Sheaves -- 6.4.5 Design Cases -- 6.5 Installation and Maintenance -- References -- Problems -- Chapter 7 Chain Drives -- 7.1 Introduction -- 7.1.1 Applications, Characteristics and Structures -- 7.1.2 Types of Chains -- 7.2 Working Condition Analysis -- 7.2.1 Geometrical Relationships in Chain Drives -- 7.2.2 Kinematic Analysis -- 7.2.2.1 Speed Ratio -- 7.2.2.2 Angular Velocity Ratio -- 7.2.2.3 Chordal Action -- 7.2.3 Force Analysis -- 7.2.3.1 Tension in Tight Side -- 7.2.3.2 Tension in Slack Side -- 7.2.3.3 Dynamic Forces -- 7.2.4 Potential Failure Modes -- 7.3 Power Transmission Capacities -- 7.3.1 Limiting Power Curves -- 7.3.2 Actually Transmitted Power -- 7.4 Design of Chain Drives -- 7.4.1 Introduction -- 7.4.2 Materials -- 7.4.3 Design Criteria -- 7.4.4 Design Procedure and Guidelines -- 7.4.4.1 Tentatively Select the Number of Sprocket Teeth z and Speed Ratio i -- 7.4.4.2 Determine the Required Power Rating of a Single‐Strand Chain, P0 -- 7.4.4.3 Select Types of Chain and Pitch, p.
7.4.4.4 Determine the Centre Distance Between the Sprocket Shafts, a and Chain Length, Lp -- 7.4.4.5 Select an Appropriate Lubrication According to the Speed of Chain -- 7.4.4.6 Forces Acting on the Shaft -- 7.4.5 Design Cases -- 7.5 Drive Layout, Tension and Lubrication -- 7.5.1 Drive Layout -- 7.5.2 Tensioning -- 7.5.3 Lubrication -- References -- Problems -- Chapter 8 Gear Drives -- 8.1 Introduction -- 8.1.1 Applications, Characteristics and Structures -- 8.1.2 Types of Gear Drives -- 8.1.3 Geometry and Terminology -- 8.2 Working Condition Analysis -- 8.2.1 Kinematic Analysis -- 8.2.1.1 Speed Ratio and Pitch Line Velocity -- 8.2.1.2 Contact Ratio -- 8.2.2 Design Loads -- 8.2.3 Potential Failure Modes -- 8.3 Strength Analysis for Spur Gears -- 8.3.1 Forces on Spur Gear Teeth -- 8.3.2 Tooth Surface Fatigue Strength Analysis -- 8.3.2.1 Hertz Formula -- 8.3.2.2 Contact Stress Calculation -- 8.3.2.3 Contact Strength Analysis -- 8.3.3 Tooth Bending Strength Analysis -- 8.3.3.1 Bending Stress Calculation -- 8.3.3.2 Bending Strength Analysis -- 8.4 Strength Analysis for Helical Gears -- 8.4.1 Geometry and Terminology -- 8.4.1.1 The Geometry of a Helical Gear -- 8.4.1.2 Contact Ratio -- 8.4.1.3 Virtual Number of Teeth -- 8.4.2 Forces on Helical Gear Teeth -- 8.4.3 Tooth Surface Fatigue Strength Analysis -- 8.4.3.1 Contact Stress Calculation -- 8.4.3.2 Contact Strength Analysis -- 8.4.4 Tooth Bending Strength Analysis -- 8.4.4.1 Bending Stress Calculation -- 8.4.4.2 Bending Strength Analysis -- 8.5 Strength Analysis for Bevel Gears -- 8.5.1 Geometry and Terminology -- 8.5.2 Forces on Straight Bevel Gear Teeth -- 8.5.3 Tooth Surface Fatigue Strength Analysis -- 8.5.3.1 Contact Stress Calculation -- 8.5.3.2 Contact Strength Analysis -- 8.5.4 Tooth Bending Strength Analysis -- 8.5.4.1 Bending Stress Calculation -- 8.5.4.2 Bending Strength Analysis.
8.6 Design of Gear Drives.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Companion Website -- Part I Fundamentals of Design and Strength Analysis -- Chapter 1 An Overview of Machine Design -- 1.1 Introduction -- 1.1.1 Machines and Machine Elements -- 1.1.2 The Scope of Machine Design -- 1.2 Machine Design -- 1.2.1 Machine Design Considerations -- 1.2.2 Machine Design Process -- 1.3 Machine Element Design -- 1.3.1 Machine Element Design Considerations -- 1.3.2 Common Failure Modes in Machine Elements -- 1.3.3 Design Criteria -- 1.3.3.1 Strength Criteria -- 1.3.3.2 Rigidity Criteria -- 1.3.3.3 Life Criteria -- 1.3.3.4 Wear Criteria -- 1.3.4 Machine Element Design Process -- 1.4 Materials and Their Properties -- 1.4.1 Types of Materials -- 1.4.1.1 Steels and Alloys -- 1.4.1.2 Cast Irons and Cast Steels -- 1.4.1.3 Nonferrous Alloys -- 1.4.1.4 Polymers -- 1.4.1.5 Composite Materials -- 1.4.2 Material Properties -- 1.4.3 Heat Treatments -- 1.4.4 Material Selection -- 1.5 Unit Systems -- 1.6 Standards and Codes -- References -- Problems -- Chapter 2 Strength of Machine Elements -- 2.1 Fluctuating Loads and Stresses -- 2.1.1 Service Factors and Design Loads -- 2.1.2 Types of Loads -- 2.1.3 Types of Stresses -- 2.1.3.1 Static Stress -- 2.1.3.2 Completely Reversed Stress -- 2.1.3.3 Repeated Stress -- 2.1.3.4 Fluctuating Stress -- 2.2 Static Strength -- 2.2.1 Static Strength for Uniaxial Stresses -- 2.2.2 Static Strength for Combined Stresses -- 2.2.2.1 Maximum Shear Stress Theory -- 2.2.2.2 Maximum Distortion Energy Theory -- 2.3 Fatigue Strength -- 2.3.1 The Nature of Fatigue -- 2.3.2 Stress‐Life Diagrams -- 2.3.3 Endurance Limit Diagrams -- 2.3.3.1 The Endurance Limit Diagram of a Material -- 2.3.3.2 The Endurance Limit Diagram of an Element -- 2.3.4 Fatigue Strength for Uniaxial Stresses with Constant Amplitude.

2.3.5 Fatigue Strength for Uniaxial Stresses with Variable Amplitude -- 2.3.5.1 Linear Cumulative Damage Rule (Miner's Rule) -- 2.3.5.2 Prediction of Cumulative Fatigue Damage -- 2.3.6 Fatigue Strength for Combined Stresses with Constant Amplitude -- 2.3.7 Measures to Improve Fatigue Strength -- 2.3.8 Examples of Strength Analyses -- 2.4 Contact Strength -- 2.4.1 Hertzian Contact Stresses -- 2.4.2 Surface Fatigue Failure -- References -- Problems -- Part II Design Applications -- Chapter 3 Detachable Joints and Fastening Methods -- 3.1 Introduction -- 3.1.1 Applications, Characteristics and Structures -- 3.1.2 Selection of Fastening Methods -- 3.2 Screw Threads -- 3.2.1 Types of Screw Threads -- 3.2.2 Standards and Terminology -- 3.3 Threaded Fastening Methods -- 3.3.1 Types of Threaded Fastening Methods -- 3.3.2 Threaded Fasteners -- 3.3.3 Tightening Torque and Preloading -- 3.3.4 Fastener Loosening and Locking -- 3.4 Force Analysis of Multiply Bolted Joints -- 3.4.1 Multiply Bolted Joints Subjected to Symmetric Transverse Loads -- 3.4.2 Multiply Bolted Joints Subjected to a Torque -- 3.4.3 Multiply Bolted Joints Subjected to a Symmetric Axial Load -- 3.4.4 Multiply Bolted Joints Subjected to an Overturning Moment -- 3.5 Strength Analysis -- 3.5.1 Potential Failure Modes -- 3.5.2 Strength Analysis for Shear Bolts -- 3.5.3 Strength Analysis for Tension Bolts -- 3.5.3.1 Tension Bolts Subjected to Axial Loads Only -- 3.5.3.2 Preloaded Tension Bolts Subjected to Transverse Loads -- 3.5.3.3 Preloaded Tension Bolts Subjected to Combined Preload and Static Axial Loads -- 3.5.3.4 Preloaded Tension Bolts Subjected to Combined Preload and Variable Axial Loads -- 3.5.4 Measures to Improve Fatigue Strength of Bolted Joints -- 3.6 Design of Bolted Joints -- 3.6.1 Introduction -- 3.6.2 Materials and Allowable Stresses -- 3.6.3 Design Criteria.

3.6.4 Design Procedure and Guidelines -- 3.6.5 Structural Design -- 3.6.6 Design Cases -- References -- Problems -- Chapter 4 Detachable Fastenings for Shaft and Hub -- 4.1 Keys -- 4.1.1 Applications, Characteristics and Structure -- 4.1.2 Types of Keys -- 4.1.3 Strength Analysis -- 4.2 Splines -- 4.3 Pins -- References -- Problems -- Chapter 5 Permanent Connections -- 5.1 Riveting -- 5.1.1 Applications, Characteristics and Structure -- 5.1.2 Types of Rivets -- 5.1.3 Strength Analysis -- 5.1.4 Design of Riveted Joints -- 5.2 Welding -- 5.2.1 Applications, Characteristics and Structure -- 5.2.2 Types of Welded Joints and Types of Welds -- 5.2.3 Strength Analysis -- 5.2.3.1 Butt Welds -- 5.2.3.2 Fillet Welds -- 5.2.4 Design of Welded Joints -- 5.3 Brazing, Soldering and Adhesive Bonding -- 5.3.1 Applications, Characteristics and Structure -- 5.3.2 Types of Adhesive and Their Selection -- 5.3.3 Analysis and Design of Adhesive Joints -- References -- Problems -- Chapter 6 Belt Drives -- 6.1 Introduction -- 6.1.1 Applications, Characteristics and Structures -- 6.1.2 Types of Belts -- 6.1.3 V‐Belts -- 6.1.3.1 Terminology and Dimensions of V‐Belts -- 6.1.3.2 Types of V‐Belts -- 6.1.3.3 V‐Belt Construction -- 6.2 Working Condition Analysis -- 6.2.1 Geometrical Relationships in Belt Drives -- 6.2.2 Force Analysis -- 6.2.2.1 Force Analysis of an Element of Belt -- 6.2.2.2 Relations Between Tight Tension F1, Slack Tension F2, Initial Tension F0 and Effective Tension Fe -- 6.2.2.3 Critical or Maximum Effective Tension, Fec -- 6.2.2.4 Centrifugal Tension, Fc -- 6.2.3 Kinematic Analysis -- 6.2.3.1 Elastic Creep -- 6.2.3.2 Slippage of Belts -- 6.2.3.3 Speed Ratio -- 6.2.4 Stress Analysis -- 6.2.4.1 Tensile Stress in Tight Side, σ1, and Slack Side, σ2 -- 6.2.4.2 Centrifugal Stress, σc -- 6.2.4.3 Bending Stress, σb -- 6.2.5 Potential Failure Modes.

6.3 Power Transmission Capacities -- 6.3.1 The Maximum Effective Tension -- 6.3.2 Power Transmission Capacity of a Single V‐Belt -- 6.3.2.1 The Basic Power Rating of a Single Standard V‐Belt, P0 -- 6.3.2.2 The Actual Power Rating of a Single V‐Belt, Pr -- 6.4 Design of Belt Drives -- 6.4.1 Introduction -- 6.4.2 Design Criteria -- 6.4.3 Design Procedure and Guidelines -- 6.4.3.1 Compute Design Power, Pca -- 6.4.3.2 Specify Suitable Belt Types -- 6.4.3.3 Determine the Sheave Size -- 6.4.3.4 Confirm the Centre Distance, a and Belt Datum Length, Ld -- 6.4.3.5 Compute Contact Angle on the Small Sheave, α1 -- 6.4.3.6 Compute the Number of Belts Required to Carry the Design Power -- 6.4.3.7 Decide Initial Tension, F0 -- 6.4.3.8 Compute the Force Acting on the Sheave Shaft, FQ -- 6.4.4 Design of V‐Belt Sheaves -- 6.4.5 Design Cases -- 6.5 Installation and Maintenance -- References -- Problems -- Chapter 7 Chain Drives -- 7.1 Introduction -- 7.1.1 Applications, Characteristics and Structures -- 7.1.2 Types of Chains -- 7.2 Working Condition Analysis -- 7.2.1 Geometrical Relationships in Chain Drives -- 7.2.2 Kinematic Analysis -- 7.2.2.1 Speed Ratio -- 7.2.2.2 Angular Velocity Ratio -- 7.2.2.3 Chordal Action -- 7.2.3 Force Analysis -- 7.2.3.1 Tension in Tight Side -- 7.2.3.2 Tension in Slack Side -- 7.2.3.3 Dynamic Forces -- 7.2.4 Potential Failure Modes -- 7.3 Power Transmission Capacities -- 7.3.1 Limiting Power Curves -- 7.3.2 Actually Transmitted Power -- 7.4 Design of Chain Drives -- 7.4.1 Introduction -- 7.4.2 Materials -- 7.4.3 Design Criteria -- 7.4.4 Design Procedure and Guidelines -- 7.4.4.1 Tentatively Select the Number of Sprocket Teeth z and Speed Ratio i -- 7.4.4.2 Determine the Required Power Rating of a Single‐Strand Chain, P0 -- 7.4.4.3 Select Types of Chain and Pitch, p.

7.4.4.4 Determine the Centre Distance Between the Sprocket Shafts, a and Chain Length, Lp -- 7.4.4.5 Select an Appropriate Lubrication According to the Speed of Chain -- 7.4.4.6 Forces Acting on the Shaft -- 7.4.5 Design Cases -- 7.5 Drive Layout, Tension and Lubrication -- 7.5.1 Drive Layout -- 7.5.2 Tensioning -- 7.5.3 Lubrication -- References -- Problems -- Chapter 8 Gear Drives -- 8.1 Introduction -- 8.1.1 Applications, Characteristics and Structures -- 8.1.2 Types of Gear Drives -- 8.1.3 Geometry and Terminology -- 8.2 Working Condition Analysis -- 8.2.1 Kinematic Analysis -- 8.2.1.1 Speed Ratio and Pitch Line Velocity -- 8.2.1.2 Contact Ratio -- 8.2.2 Design Loads -- 8.2.3 Potential Failure Modes -- 8.3 Strength Analysis for Spur Gears -- 8.3.1 Forces on Spur Gear Teeth -- 8.3.2 Tooth Surface Fatigue Strength Analysis -- 8.3.2.1 Hertz Formula -- 8.3.2.2 Contact Stress Calculation -- 8.3.2.3 Contact Strength Analysis -- 8.3.3 Tooth Bending Strength Analysis -- 8.3.3.1 Bending Stress Calculation -- 8.3.3.2 Bending Strength Analysis -- 8.4 Strength Analysis for Helical Gears -- 8.4.1 Geometry and Terminology -- 8.4.1.1 The Geometry of a Helical Gear -- 8.4.1.2 Contact Ratio -- 8.4.1.3 Virtual Number of Teeth -- 8.4.2 Forces on Helical Gear Teeth -- 8.4.3 Tooth Surface Fatigue Strength Analysis -- 8.4.3.1 Contact Stress Calculation -- 8.4.3.2 Contact Strength Analysis -- 8.4.4 Tooth Bending Strength Analysis -- 8.4.4.1 Bending Stress Calculation -- 8.4.4.2 Bending Strength Analysis -- 8.5 Strength Analysis for Bevel Gears -- 8.5.1 Geometry and Terminology -- 8.5.2 Forces on Straight Bevel Gear Teeth -- 8.5.3 Tooth Surface Fatigue Strength Analysis -- 8.5.3.1 Contact Stress Calculation -- 8.5.3.2 Contact Strength Analysis -- 8.5.4 Tooth Bending Strength Analysis -- 8.5.4.1 Bending Stress Calculation -- 8.5.4.2 Bending Strength Analysis.

8.6 Design of Gear Drives.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.