Modern Engineering for Design of Liquid-Propellant Rocket Engines.
Material type:
- text
- computer
- online resource
- 9781600864001
- 629.47522
- TL545 -- .H89 1992eb
Cover -- Title -- Copyright -- Foreword -- Preface -- Table of Contents -- Chapter 1. Introduction to Liquid-Propellant Rocket Engines -- 1.1 Basic Elements of a Liquid-Propellant Rocket Engine -- 1.2 Generation of Thrust -- 1.3 Gas-Flow Processes in the Combustion Chamber and Nozzle -- The Perfect Gas Law -- Principle of Conservation of Energy -- Principle of Conservation of Matter -- The Isentropic Flow Process -- Gas Flow Through Liquid-Propellant Rocket Combustion Chambers -- Gas Flow Through Rocket Nozzles -- 1.4 Performance Parameters of a Liquid-Propellant Rocket Engine -- Thrust-Chamber Specific Impulse (I[sub(s)])tc -- Characteristic Velocity c* -- Thrust Coefficient C[sub(f)] -- Summary of the Influence of pa, ε, γ, R, and (p[sub(c)])ns on Engine Performance -- Correction Factors and Magnitudes of Engine Performance Parameters -- 1.5 Liquid Propellants -- Monopropellants -- Bipropellants -- Cryogenic Propellants -- Storable Liquid Propellants -- Additives for Liquid Propellants -- Optimum Mixture Ratio -- Density Impulse -- Selection of Liquid Propellants -- Liquid-Propellant Performance and Physical Properties -- Chapter 2. Engine Requirements and Preliminary Design Analyses -- 2.1 Introduction -- 2.2 Major Rocket-Engine Design Parameters -- Thrust Level -- Performance -- Duration -- Mixture Ratio -- Weight -- Envelope (Size) -- Reliability -- Cost -- Availability (Scheduling) -- 2.3 Mission Requirements -- Typical Mission Goals -- Typical Vehicle Requirement Optimization -- 2.4 Engine Preliminary Design -- Engine System and Component Concepts -- Preliminary Design Optimization -- 2.5 Design Philosophy -- The Importance of Design Quality -- Systems Analysis and Design Layout -- Stress Analysis -- Selection of Materials -- Chapter 3. Introduction to Sample Calculations -- 3.1 Approach -- 3.2 A-1 Stage Engine.
General Engine-System Description -- System Operation -- 3.3 A-2 Stage Engine -- General Engine-System Description -- System Operation -- Starting Sequence -- Cutoff Sequence -- 3.4 A-3 Stage Engine -- General Engine-System Description -- System Operation -- 3.5 A-4 Stage Engine -- General Engine System Description -- System Operation -- Chapter 4. Design of Thrust Chambers and Other Combustion Devices -- 4.1 Basic Thrust-Chamber Elements -- 4.2 Thrust-Chamber Performance Parameters -- Specific Impulse I[sub(s)] (s) -- Characteristic Velocity c* (ft/s) -- Thrust Coefficient C[sub(f)] (Dimensionless) -- Performance Calculation -- 4.3 Thrust-Chamber Configuration Layout -- Combustion-Chamber Volume -- Combustion-Chamber Shape -- Nozzle Expansion Area Ratio -- Nozzle Shape -- Clustered-Nozzle Concepts -- Alternate Solution -- 4.4 Thrust-Chamber Cooling -- Cooling Techniques and Selection -- Gas-Side Heat Transfer -- Regenerative Cooling -- Coolant-Side Heat Transfer -- Wall Design Considerations -- Tubular-Wall Thrust-Chamber Design -- Coaxial-Shell Thrust-Chamber Design -- Pressure Drop in Cooling Passages -- Channel-Wall Design -- Dump Cooling -- Film Cooling -- Liquid-Film Cooling -- Gaseous-Film Cooling -- Mixture-Ratio Bias -- Transpiration Cooling -- Ablative Cooling -- Radiation Cooling -- Heat-Sink Cooling -- Combined Cooling Methods -- 4.5 Injector Design -- Injector Design Issues -- Combustion Stability -- Manifolds -- Manifold Types -- Injection Elements -- Nonimpinging Elements -- Unlike-Impinging Elements -- Like-Impinging Elements -- Other Element Types -- Throttling -- Injection Pressure Drop and Orifice Sizing -- Experimental Evaluation of Injector Designs -- Analytical Models -- 4.6 Gas-Generating Devices -- Solid-Propellant Gas Generators -- Liquid-Monopropellant Gas Generators -- Liquid-Bipropellant Gas Generators.
Thrust-Chamber Gas-Tapoff Systems -- 4.7 Ignition Devices -- Igniters -- Hypergolic Igniters -- Ignition Detection -- 4.8 Combustion Instability -- Types of Instability -- Intrinsic Acoustic Instabilities -- Injection-Coupled Acoustic Instability -- Low-Frequency Instabilities -- Prevention of Triggering Mechanisms -- Propellant-Feed System Design -- Combustion-Chamber Design -- Injector Design -- Propellant Combination and Mixture Ratio -- Engine-System Operating Characteristics -- Application of Damping Devices -- Injector Baffles -- Chamber Divergent Wall Gap -- Acoustic Cavities and Liners -- Stability Rating -- Feed-System Disturbances -- Combustion-Chamber Disturbances -- Spontaneous-Instability Methods -- Instrumentation -- Chapter 5. Design of Gas-Pressurized Propellant Feed Systems -- 5.1 Determination of Pressurant Requirements -- Required System Data -- Factors Influencing Pressurant Requirements -- Design Calculations of Pressurant Requirements -- 5.2 Stored-Gas Systems -- Commonly Used Configurations -- Calculations for Stored-Gas Requirements -- Design of Stored-Gas System Components -- Tanks -- Pressure Regulators -- Thrust-Chamber Heat Exchangers -- 5.3 Propellant-Evaporation Systems -- Pump-Fed Propellant Feed Systems -- Gas-Pressurized Propellant Feed Systems -- 5.4 Inert-Gas-Evaporation Systems -- 5.5 Chemical-Reaction Systems -- Solid-Propellant Gas Generators -- Liquid-Propellant Gas Generator -- Direct Injection into Propellant Tank -- 5.6 Selection of Pressurization -- Chapter 6. Design of Turbopump Propellant Feed Systems -- 6.1 Elements of Turbopump-Fed Systems -- Propellant Pumps -- Turbines -- Turbine Power Sources -- Turbopump-Drive Arrangements -- Description of Developed Turbopump Systems -- 6.2 Turbopump System Performance and Design Parameters -- Turbopump System Performance -- Turbopump System Design Parameters.
6.3 Inducer Design -- 6.4 Design of Centrifugal Pumps -- General Design Procedures -- Operating Principles of the Centrifugal Impeller -- Centrifugal-Impeller Design Elements -- Design of Casings -- Balancing the Axial Thrust of Centrifugal Pumps -- 6.5 Design of Axial-Flow Pumps -- Basic Assumptions for Axial-Flow Pumps -- Operation of the Impeller Rotor -- Function of the Stator -- Design of Impeller Rotors and Stators -- Diffusion and Retardation Factors -- Design of Casings for Axial Pumps -- Balancing the Axial Thrust of Multistage Axial Pumps -- 6.6 Turbine Design -- General Design Procedure -- Design of Turbine Nozzles -- Design of Turbine Rotor Blades -- Design of Single-Stage, Two-Rotor, Velocity-Compounded Impulse Turbines -- Design of Two-Stage, Two-Rotor, Pressure-Compounded Impulse Turbine -- Design of Two-Stage, Two-Rotor, Low Reaction Turbine -- 6.7 Turbopump Rotordynamics and Mechanical Elements -- Rotordynamics -- Turbopump Bearing Design -- Dynamic-Seal Design -- Turbopump Gear Design -- 6.8 Design Layout of Turbopump Assemblies -- 6.9 References -- Chapter 7. Design of Rocket-Engine Control and Condition-Monitoring Systems -- 7.1 CCM-Into a New Era -- Basic Liquid-Propellant-Engine Control Systems -- Engine Thrust-Level Control -- Propellant-Mixture-Ratio and Propellant-Utilization Control -- Thrust-Vector Control -- CCM Concept and Preliminary Design Development -- Control Methods -- Control-Law Development -- 7.2 Design of Fluid-Flow-Control Devices -- Design Considerations for Fluid-Flow-Control Components -- Design of Dynamic Seals for Fluid-Control Components -- Design of Seating Closures for Fluid-Control Components -- Design of Propellant Valves -- Design of Control Pilot Valves -- Design of Servovalves -- Design of Gas-Pressure Regulators -- Design of Liquid-Flow and Pressure Regulators -- Design of Pressure-Relief Valves.
Design of Miscellaneous Fluid-Flow-Control Components -- 7.3 Design of Instrumentation and Harnesses -- Engine Instrumentation -- Principal Types of Instrumentation -- Instrumentation Installation -- Engine Harnesses -- Design Considerations -- 7.4 Avionics Architecture -- Requirements Definition -- Sensor-Input Requirements -- Data-processing Requirements -- Control of Effectors -- Engine and Control Self-test -- Environmental Requirements -- Vehicle Interface -- Controller Architecture -- Function Allocation -- Failure Detection and Response -- Hardware Design Rules -- Postflight Data Analysis -- Software Requirements -- 7.5 References -- Chapter 8. Design of Propellant Tanks -- 8.1 Design Configurations -- Prepackaged Storable-Liquid Systems -- Booster-Stage Systems -- Upper-Stage Systems -- 8.2 Design Considerations -- Propellant Properties -- Shape and Size of Propellant Tank -- Propellant-Tank Arrangement -- Structural Loads -- Safety Factors -- Material and Fabrication Considerations -- Design Problem -- 8.3 Structural Design -- Spherical Tanks -- Ellipsoidal and Spherical Ends (Fig. 8-6) -- Cylindrical Section -- Axial Compressive Loading on the Cylindrical Section -- Water-Hammer Effects Due to Impact -- 8.4 Storable-Liquid-Propellant Tank Design -- Tank-Material Compatibility -- Tank Construction -- Wall Surface Requirements -- 8.5 Cryogenic Liquid-Propellant Tank Design -- Insulation Requirements for Cryogenic-Propellant Tanks -- Basic Insulation Types -- Selection of Tank-Insulation Designs -- Insulation for Common Bulkheads -- 8.6 Composite Liquid-Propellant Tank Design -- 8.7 Design of Propellant-Tank Pressurant Diffusers -- 8.8 Propellant Expulsion Under Zero-Gravity or Oscillatory g-Loading Conditions -- Settling -- Propellant Management -- Metallic Diaphragms -- Elastomeric Diaphragms -- Bellows -- Pistons -- Surface-Tension Devices.
Chapter 9. Design of Interconnecting Components and Mounts.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.