Coherent Wireless Power Charging and Data Transfer for Electric Vehicles.
Material type:
- text
- computer
- online resource
- 9781681089461
- 629.2293
- TL220 .H836 2021
Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Preface -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- Introduction -- Background -- 1.1. INTRODUCTION -- 1.2. Powertrain Architecture Classification -- 1.2.1 Series Hybrid Drivetrain -- 1.2.2. Parallel Hybrid Drivetrain -- 1.2.3. Series-parallel Hybrid Drivetrain Objectives -- 1.3. Electric Vehicles -- 1.3.1. BEV -- 1.3.2. FCEV -- 1.3.3. Mild Hybrid -- 1.3.4. Full Hybrid -- 1.3.5. PHEV -- 1.4. A Brief Review of EVs Traction Motors -- 1.4.1. DC Motor -- 1.4.2. Permanent Magnet Synchronous Motor (PM) -- 1.4.3. Induction Motor (IM) -- 1.4.4. Switched Reluctance Motor (SRM) -- 1.5. Li-ion Batteries -- 1.6. EVs on a Power Distribution System -- 1.6.1. Conductive Battery Charging -- 1.6.2. Wireless Battery Charging -- CONCLUSION -- The Trend of Green Power in the Civilian Vehicle Market -- 2.1. INTRODUCTION -- 2.2. Renewable and Sustainable Energy -- 2.2.1 Electric Energy -- 2.2.2. Household Vehicle Market -- 2.3. Optimal Unit Commitment -- CONCLUSION -- Electromagnetic Waves -- 3.1. INTRODUCTION -- 3.2. Maxwell's Equations -- 3.2.1. Faraday's law -- 3.2.2. Ampere's law -- 3.2.3. Gauss' law -- 3.2.4. Gauss' Law for Magnetism -- 3.3. Wave Equation -- 3.3.1. Concept and principle of the Wave Equation -- CONCLUSION -- AC Network Analysis -- 4.1. INTRODUCTION -- 4.2. Fundamental Components and Power Consumption of Resonant Circuits -- 4.2.1. Resistor -- 4.2.2. Inductor -- 4.2.3. Capacitor -- 4.3. Resonant Circuit -- 4.3.1. Series RLC resonant circuit -- 4.3.2. Power -- 4.3.3. Quality factor -- 4.3.4. Bandwidth and Selectivity -- 4.4. Parallel RLC resonant circuit -- 4.4.1. Power -- 4.4.2. Quality factor -- 4.4.3. BW and Selectivity -- CONCLUSION -- Inductive and Magnetic Resonance -- 1.1. INTRODUCTION -- 1.2. Inductive Resonance.
1.2.1 Basic Compensated Topologies -- 1.2.2 LCL/LCC-compensated Topologies -- 1.2.3 Power Pad -- 1.3. Magnetic Resonance -- CONCLUSION -- EV Charging Technology -- 1.1. INTRODUCTION -- 1.2. WPT with Grid -- 1.3. WPT with a Renewable Resource -- CONCLUSION -- Adaptive Compensation of Magnetic Inductive Variation -- 7.1. INTRODUCTION -- 7.2. Bidirectional Power Flow Configuration on an EV -- 7.3. Adaptive Tracking of the Optimal Switching Frequency Using an Impedance Matching Network -- CONCLUSION -- Coherent Wireless Power and Data Transfer -- 8.1. INTRODUCTION -- 8.2. Bidirectional Power Transfer -- 8.3. Data Transfer -- 8.3.1. Modulation Principles -- 8.4 . Before Power Transfer -- 8.5. After Power Transfer -- 8.5.1. Current Trimming Method -- 8.5.2. Data Attached Method -- CONCLUSION -- System Integration and Experimentation -- 9.1. INTRODUCTION -- 9.2. Configuration of the Prototype EV -- 9.3. Experimental Verification -- 9.3.1 Experiment on G2V power flow -- 9.3.2. Current Trimming Experiment -- 9.3.3. Data Attachment Experiment -- 9.3.4. Experiment for an Emergency Event -- 9.3.5. Variations in Δτ and the Power Transfer Efficiency Under Data Attachment -- 9.3.6. Power Transmission Quality -- 9.3.7. Data Transmission Quality -- CONCLUSION -- References -- Subject Index -- Back Cover.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.