ORPP logo
Image from Google Jackets

Recent Advances in Dielectric Materials.

By: Material type: TextTextPublisher: Hauppauge : Nova Science Publishers, Incorporated, 2009Copyright date: ©2009Edition: 1st edDescription: 1 online resource (808 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781616682705
Subject(s): Genre/Form: Additional physical formats: Print version:: Recent Advances in Dielectric MaterialsDDC classification:
  • 537/.24
LOC classification:
  • TK453 -- .R43 2009eb
Online resources:
Contents:
Intro -- RECENT ADVANCES IN DIELECTRIC MATERIALS -- RECENT ADVANCES IN DIELECTRIC MATERIALS -- CONTENTS -- PREFACE -- Chapter 1LOW-K NANOPOROUS INTERDIELECTRICS:MATERIALS, THIN FILM FABRICATIONS,STRUCTURES AND PROPERTIES -- Abstract -- I. Introduction -- II. Recent Developments in Low-k Nanoporous Dielectrics -- II.1. Hollow Nanoparticles -- II.2. Dendrimers -- II.3. Star-shape Polymers -- II.4. Hyperbranched Polymers -- II.5. Crosslinked Polymer Nanoparticles -- II.6. Core-corona Polymer Nanoparticles -- II.7. Linear Polymers -- II.8. Cage Supramolecules -- II.9. High Boiling Point Molecules -- II.10. Hybrid Copolymers -- III. Characterization of Pore Structures -- III.1. GIXS -- III.2. Transmission Radiation Scattering -- III.3. Microscopy -- III.4. Porosimetry -- III.5. Spectroscopy -- III.6. Comparitive Studies of Characterization of Pore Structure -- IV. Conclusions -- References -- Chapter 2DIELECTRIC MATERIALS: INTRODUCTION,RESEARCH AND APPLICATIONS -- Abstract -- 1. Introduction -- 2. Classification of Dielectrics -- A. Non-ferroelectric Materials -- B. Ferroelectric Materials -- 3. History -- 3.1. Ferroelectricity -- 3.2. Pyroelectricity -- 3.3. Piezoelectricity -- 3.4. Multiferroicity -- 4. Dielectric Response of Materials -- 5. Dielectric Spectroscopy -- 5.1. Phase Transition -- 5.2. Diffuse Phase Transition -- 5.3. Dielectric Relaxation -- 6. Synthesis of Different Dielectric Materials -- 6.1. Single Crystal -- 6.2. Ceramics -- 1. Mechanical Methods -- 2. Chemical Methods -- 6.3. Thin Film -- 6.4. Polymers -- 6.4.1. Electrical Properties of Polymers -- 6.4.2. Different Types of Dielectric Polymers -- 6.5. Liquid Crystals -- Thermotropic LCs -- Lyotropic -- Metallotropic -- 6.5.1. Ferroelectric Liquid Crystals -- 6.5.2. Dielectric Spectroscopy of Liquid Crystal -- 7. Characterization Techniques -- 7.1. Thermal Analysis.
7.1.1. Differential Thermal Analysis (DTA) -- 7.1.2. Thermo Gravimetric Analysis (TGA) -- 7.3. Structural and Microstructural Analysis -- 7.3.1. X-ray Diffraction Study (XRD) -- 7.3.2. Scanning Electron Microscopy (SEM) -- 7.3.3. Transmission Electron Microscopy (TEM) -- 7.3.4. FTIR Spectroscopy -- 7.3.5. Raman Spectroscopy -- 7.4. Dielectric Study -- 7.4.1. Spontaneous Polarization Study -- 7.4.2. Pyroelectric Studies -- 7.4.3. Piezoelectric Study -- 7.5. Electrical Property -- 7.5.1. Complex Impedance Spectroscopy -- 7.5.2. Electrical Conductivity Study -- ac Conductivity -- dc Conductivity -- 8. Research on Some Dielectric Materials -- 8.1. Hydrogen-Bonded Materials -- 8.1.1. KH2PO4 -- 8.1.2. PbHPO4 -- 8.1.3. CsH2PO4 -- 8.2. Oxide Ferroelectrics -- 8.2.1. Perovskite Structures -- (a) Charge Neutrality -- (b) Goldschmidt Tolerance Factor -- 8.2.2. Tungsten Bronze Structure -- 8.2.3. Layered Structure Oxides and Complex Compounds -- 8.2.4. Pyrochlore Oxides -- 8.2.4. Other Dielectrics -- 9. Complex Impedance Spectroscopy of Dielectric Materials -- 10. Multiferroic Property of Dielectric Materials -- 11. Applications -- 11.1. Dielectric Devices -- 11.2. Piezoelectric Devices -- 11.3. Pyroelectric Devices -- 11.4. Ferroelectric Devices -- 11.5. Multiferroic Devices -- 11.6. Other Applications -- 12. Conclusion -- References -- Chapter 3UNDERSTANDING THE IMPACT OF HIGH-K GATE ANDSPACER DIELECTRICS ON THE DEVICE AND CIRCUITPERFORMANCE OF NANOSCALE MOSFETS -- Introduction -- 1. Impact of High-K Gate Dielectric on Device Performance -- 1.1. Fringe Induced Barrier Lowering (FIBL) -- 1.2. Impact of S/D Junction Overlap (Lov) on the FIBL -- 1.3. Impact of high-K on Novel Device Structures -- 2. Impact of High-K Gate Dielectric on Circuit Performance -- 2.1. Effect of Charge Trapping in High-K on Circuit Performance.
2.2. Effect of Leakage in High-K Devices on the Circuit Performance -- 3. Effect of High-K Spacers on Nanoscale CMOS Devices -- 3.1. Demonstration of High-K Offset Spacers in MOSFETs -- 3.2. Effect of High-K Spacers on ON- and OFF-Current in OverlappedMOSFETs -- 3.3. Effect of High-K Spacer on VTH Roll-Off in Overlapped MOSFETs -- 3.4. Effect of High-K Spacer on GIDL Current in Overlapped MOSFETs -- 3.5. Effect of High-K Spacer in Non-Overlapped MOSFETs -- 3.6. Effect of High-K Spacer in Non-overlapped DGFET/FinFETs -- 3.7. Effect on High-K Spacer on Reliability -- Summary -- References -- Chapter4ORIENTATIONSELECTIVITYCONTROLBYSURFACEPOTENTIALMODIFICATIONINOXIDETHINFILMEPITAXIALGROWTH -- Abstract -- 1.Introduction -- 2.PrincipleofOSE -- 3.Experimental -- 3.1.ExperimantalProcedureforOSE -- 3.2.TwoStepGrowthMethod -- 4.OSEbySubstrateBiasApplication -- 4.1.HowtoSelectGrowthOrientations -- 4.2.OrientationComponentVariationwithSubstrateBias -- 4.3.GrowthRateDependenceofOSE -- 4.4.EffectofOxygenRadicalBeamIrradiation -- 5.ElectronBeamInducedOSE -- 5.1.OptimumElectronBeamEnergyforCeO2(100)Growth -- 5.2.OptimizationofOxygenGasFlowRate -- 5.3.LowerLimitofSubstrateResistivity -- 6.CharacterizationofOSELayers -- 6.1.Cross-SectionalLatticeImageObservation(XTEM) -- 6.1.1.XTEMSampleFabricationandObservationofCeO2(110)/Si(100) -- 6.1.2.ObservationofCeO2(100)/Si(100) -- 6.2.SurfaceMorphology -- 7.Conclusion -- Acknowledgements -- References -- Chapter5UNUSUALDIELECTRICPROPERTIESOFCACUTIO -- Abstract -- 1.Introduction -- 2.PhysicalProperties -- 3.ImpurityEffects -- 4.CCTO-BasedComposites -- 5.RelatedOxides -- 6.ConcludingRemarks -- Acknowledgments -- References -- Chapter 6 DIELECTRIC RESPONSE METHODS FOR DIAGNOSTICS OF POWER TRANSFORMERS -- Abstract -- 1. Introduction -- 2. Insulating Materials Defined -- 3. Power Transformer Insulation -- 3.1. Mineral Oil.
3.2. Paper and Pressboard -- 3.3. Moisture in Transformer -- 3.3.1. Moisture in Oil -- 3.3.2. Moisture in Paper -- 4. Insulation Ageing -- 5. Condition Assessment of Power Transformer Insulation -- 6. Polarization Phenomena -- 6.1. Molecular Polarization -- 6.2. Different Polarizations -- a. Electronic Polarisation -- b. Ionic polarization (orAatomic) -- c. Dipolar Polarization (or Ionisation) -- d. Space Charge Polarisation -- e. Polarizability -- 6.3. Dielectric Dissipation Factor (DDF) or Dielectric Losses -- 6.3.1. Equivalent Circuits of a Dielectric -- 6.3.2. Measurement of Dielectric Loss and Dielectric Constant -- 6.4. Insulation Resistance -- 6.5. Polarization Index -- 7. Dielectric Spectroscopy Techniques -- 7.1. Polarization and Depolarization Current (PDC) Measurements -- 7.1.1. Theoretical Background -- 7.1.2. Mathematical Equivalent Model -- 7.1.2.1. Debye Model with Single and Distributed Time Constants -- 7.1.2.2. General Response Function -- 7.1.2.3. X-Y Model -- 7.1.3. Interpretation of Measurement Data -- 7.1.3.1. Influence of Moisture -- 7.1.3.2. Influence of Temperature -- 7.1.3.3. Influence of Ageing -- 7.2. Recovery Voltage Method (RVM) Measurements -- 7.2.1. Theory -- 7.2.2. Interpretation of Measurement Data -- 7.3. Frequency Domain Spectroscopy (FDS) -- 7.3.1. Interpretation of Measurement Data -- 7.4. Time or Frequency Domain? -- 7.5. Converting Time Domain Measurements to Frequency Domain -- 7.6. Practical Measurements Issues to be Considered -- 7.7. Future Trends -- Conclusions -- References -- Chapter 7SYMMETRY-INDUCED RESONANT TRANSMISSIONOF ELECTROMAGNETIC WAVES IN NON-PERIODICDIELECTRIC MICROSTRUCTURES -- Abstract -- 1. Introduction -- II. Theoretical Analysis of Optical Propagation in AperiodicDielectric Multilayers with Internal Symmetry -- III. Optical Observation of Symmetric Fibonacci DielectricMultilayers.
IV. Resonant Transmission and Frequency Trifurcation of LightWaves in Thue-Morse Dielectric Multilayers -- V. Manipulation of Resonant Transmission of ElectromagneticWave by Tuning Nonperiodic Structure -- VI. Selectable-Frequency and Tunable-Q Perfect Transmissionsof Electromagnetic Waves in Dielectric Heterostructures -- VII. Summary -- Acknowledgments -- References -- Chapter 8POLYMER DIELECTRIC MATERIALS -- Abstract -- Introduction -- 1. Classification of Low Dielectric Constant Polymer -- 1.1. Classification Based on Physical Structure -- 1.2. Classification Based on Dielectric Constant Value -- 1.3. Classification Based on the Low Dielectric Groups -- 2. Mechanism for Lowering Dielectric Constant -- 2.1. Polarization Mechanism -- 2.2. Methods for the Preparation of Low Dielectric Constant Polymer -- 3. Methods to Prepare Polymer Dielectrics -- 3.1. CVD and PECVD -- 3.2. Solution Deposition by Spin-Coating -- 3.3. Sol-Gel Processing -- 3.4. Templating -- 3.5. Thermal Induced Phase Separation -- 4. Polymer Materials with Low Dielectric Constant -- 4.1. Aromatic Polymers -- 4.1.1. Polyimides (PIs) -- 4.1.2. Poly (Aryl Ether)s -- 4.1.3. SiLK -- 4.1.4. Polyaniline -- 4.1.5. Benzocyclobutene (BCB) Resins -- 4.1.6. Poly (Binaphthylene Ether) and Poly (Diphenyl) -- 4.1.7. Polyanate Esters -- 4.1.8. Heterocyclic Polymers -- 4.2. Fluorinated Polymers -- 4.2.1. Fluorinated Polyimides -- 4.2.2. Fluorinated poly (aryther) s -- 4.2.3. Poly (Perfluorocyclobutane) (PFCB) -- 4.2.4. Fluorinated Epoxy Resin -- 4.2.5. Fluorinated Amorphous Carbon (α-C:H:F) -- 4.2.6. Fluorinated Poly (Binaphthylene Ether) -- 4.2.7. Fluorinated Poly (Benzoxazine) -- 4.3. Silicon Containing Polymers -- 4.3.1. Poly (silsequioxane) -- 4.3.2. Organosilicon Films (Si:O:C:H) -- 4.3.3. Organofluorosilicate Glass (OFSG) -- 4.4. Porous Polymers -- 4.4.1. Porous Polyimides.
4.4.2. Porous SiLK.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- RECENT ADVANCES IN DIELECTRIC MATERIALS -- RECENT ADVANCES IN DIELECTRIC MATERIALS -- CONTENTS -- PREFACE -- Chapter 1LOW-K NANOPOROUS INTERDIELECTRICS:MATERIALS, THIN FILM FABRICATIONS,STRUCTURES AND PROPERTIES -- Abstract -- I. Introduction -- II. Recent Developments in Low-k Nanoporous Dielectrics -- II.1. Hollow Nanoparticles -- II.2. Dendrimers -- II.3. Star-shape Polymers -- II.4. Hyperbranched Polymers -- II.5. Crosslinked Polymer Nanoparticles -- II.6. Core-corona Polymer Nanoparticles -- II.7. Linear Polymers -- II.8. Cage Supramolecules -- II.9. High Boiling Point Molecules -- II.10. Hybrid Copolymers -- III. Characterization of Pore Structures -- III.1. GIXS -- III.2. Transmission Radiation Scattering -- III.3. Microscopy -- III.4. Porosimetry -- III.5. Spectroscopy -- III.6. Comparitive Studies of Characterization of Pore Structure -- IV. Conclusions -- References -- Chapter 2DIELECTRIC MATERIALS: INTRODUCTION,RESEARCH AND APPLICATIONS -- Abstract -- 1. Introduction -- 2. Classification of Dielectrics -- A. Non-ferroelectric Materials -- B. Ferroelectric Materials -- 3. History -- 3.1. Ferroelectricity -- 3.2. Pyroelectricity -- 3.3. Piezoelectricity -- 3.4. Multiferroicity -- 4. Dielectric Response of Materials -- 5. Dielectric Spectroscopy -- 5.1. Phase Transition -- 5.2. Diffuse Phase Transition -- 5.3. Dielectric Relaxation -- 6. Synthesis of Different Dielectric Materials -- 6.1. Single Crystal -- 6.2. Ceramics -- 1. Mechanical Methods -- 2. Chemical Methods -- 6.3. Thin Film -- 6.4. Polymers -- 6.4.1. Electrical Properties of Polymers -- 6.4.2. Different Types of Dielectric Polymers -- 6.5. Liquid Crystals -- Thermotropic LCs -- Lyotropic -- Metallotropic -- 6.5.1. Ferroelectric Liquid Crystals -- 6.5.2. Dielectric Spectroscopy of Liquid Crystal -- 7. Characterization Techniques -- 7.1. Thermal Analysis.

7.1.1. Differential Thermal Analysis (DTA) -- 7.1.2. Thermo Gravimetric Analysis (TGA) -- 7.3. Structural and Microstructural Analysis -- 7.3.1. X-ray Diffraction Study (XRD) -- 7.3.2. Scanning Electron Microscopy (SEM) -- 7.3.3. Transmission Electron Microscopy (TEM) -- 7.3.4. FTIR Spectroscopy -- 7.3.5. Raman Spectroscopy -- 7.4. Dielectric Study -- 7.4.1. Spontaneous Polarization Study -- 7.4.2. Pyroelectric Studies -- 7.4.3. Piezoelectric Study -- 7.5. Electrical Property -- 7.5.1. Complex Impedance Spectroscopy -- 7.5.2. Electrical Conductivity Study -- ac Conductivity -- dc Conductivity -- 8. Research on Some Dielectric Materials -- 8.1. Hydrogen-Bonded Materials -- 8.1.1. KH2PO4 -- 8.1.2. PbHPO4 -- 8.1.3. CsH2PO4 -- 8.2. Oxide Ferroelectrics -- 8.2.1. Perovskite Structures -- (a) Charge Neutrality -- (b) Goldschmidt Tolerance Factor -- 8.2.2. Tungsten Bronze Structure -- 8.2.3. Layered Structure Oxides and Complex Compounds -- 8.2.4. Pyrochlore Oxides -- 8.2.4. Other Dielectrics -- 9. Complex Impedance Spectroscopy of Dielectric Materials -- 10. Multiferroic Property of Dielectric Materials -- 11. Applications -- 11.1. Dielectric Devices -- 11.2. Piezoelectric Devices -- 11.3. Pyroelectric Devices -- 11.4. Ferroelectric Devices -- 11.5. Multiferroic Devices -- 11.6. Other Applications -- 12. Conclusion -- References -- Chapter 3UNDERSTANDING THE IMPACT OF HIGH-K GATE ANDSPACER DIELECTRICS ON THE DEVICE AND CIRCUITPERFORMANCE OF NANOSCALE MOSFETS -- Introduction -- 1. Impact of High-K Gate Dielectric on Device Performance -- 1.1. Fringe Induced Barrier Lowering (FIBL) -- 1.2. Impact of S/D Junction Overlap (Lov) on the FIBL -- 1.3. Impact of high-K on Novel Device Structures -- 2. Impact of High-K Gate Dielectric on Circuit Performance -- 2.1. Effect of Charge Trapping in High-K on Circuit Performance.

2.2. Effect of Leakage in High-K Devices on the Circuit Performance -- 3. Effect of High-K Spacers on Nanoscale CMOS Devices -- 3.1. Demonstration of High-K Offset Spacers in MOSFETs -- 3.2. Effect of High-K Spacers on ON- and OFF-Current in OverlappedMOSFETs -- 3.3. Effect of High-K Spacer on VTH Roll-Off in Overlapped MOSFETs -- 3.4. Effect of High-K Spacer on GIDL Current in Overlapped MOSFETs -- 3.5. Effect of High-K Spacer in Non-Overlapped MOSFETs -- 3.6. Effect of High-K Spacer in Non-overlapped DGFET/FinFETs -- 3.7. Effect on High-K Spacer on Reliability -- Summary -- References -- Chapter4ORIENTATIONSELECTIVITYCONTROLBYSURFACEPOTENTIALMODIFICATIONINOXIDETHINFILMEPITAXIALGROWTH -- Abstract -- 1.Introduction -- 2.PrincipleofOSE -- 3.Experimental -- 3.1.ExperimantalProcedureforOSE -- 3.2.TwoStepGrowthMethod -- 4.OSEbySubstrateBiasApplication -- 4.1.HowtoSelectGrowthOrientations -- 4.2.OrientationComponentVariationwithSubstrateBias -- 4.3.GrowthRateDependenceofOSE -- 4.4.EffectofOxygenRadicalBeamIrradiation -- 5.ElectronBeamInducedOSE -- 5.1.OptimumElectronBeamEnergyforCeO2(100)Growth -- 5.2.OptimizationofOxygenGasFlowRate -- 5.3.LowerLimitofSubstrateResistivity -- 6.CharacterizationofOSELayers -- 6.1.Cross-SectionalLatticeImageObservation(XTEM) -- 6.1.1.XTEMSampleFabricationandObservationofCeO2(110)/Si(100) -- 6.1.2.ObservationofCeO2(100)/Si(100) -- 6.2.SurfaceMorphology -- 7.Conclusion -- Acknowledgements -- References -- Chapter5UNUSUALDIELECTRICPROPERTIESOFCACUTIO -- Abstract -- 1.Introduction -- 2.PhysicalProperties -- 3.ImpurityEffects -- 4.CCTO-BasedComposites -- 5.RelatedOxides -- 6.ConcludingRemarks -- Acknowledgments -- References -- Chapter 6 DIELECTRIC RESPONSE METHODS FOR DIAGNOSTICS OF POWER TRANSFORMERS -- Abstract -- 1. Introduction -- 2. Insulating Materials Defined -- 3. Power Transformer Insulation -- 3.1. Mineral Oil.

3.2. Paper and Pressboard -- 3.3. Moisture in Transformer -- 3.3.1. Moisture in Oil -- 3.3.2. Moisture in Paper -- 4. Insulation Ageing -- 5. Condition Assessment of Power Transformer Insulation -- 6. Polarization Phenomena -- 6.1. Molecular Polarization -- 6.2. Different Polarizations -- a. Electronic Polarisation -- b. Ionic polarization (orAatomic) -- c. Dipolar Polarization (or Ionisation) -- d. Space Charge Polarisation -- e. Polarizability -- 6.3. Dielectric Dissipation Factor (DDF) or Dielectric Losses -- 6.3.1. Equivalent Circuits of a Dielectric -- 6.3.2. Measurement of Dielectric Loss and Dielectric Constant -- 6.4. Insulation Resistance -- 6.5. Polarization Index -- 7. Dielectric Spectroscopy Techniques -- 7.1. Polarization and Depolarization Current (PDC) Measurements -- 7.1.1. Theoretical Background -- 7.1.2. Mathematical Equivalent Model -- 7.1.2.1. Debye Model with Single and Distributed Time Constants -- 7.1.2.2. General Response Function -- 7.1.2.3. X-Y Model -- 7.1.3. Interpretation of Measurement Data -- 7.1.3.1. Influence of Moisture -- 7.1.3.2. Influence of Temperature -- 7.1.3.3. Influence of Ageing -- 7.2. Recovery Voltage Method (RVM) Measurements -- 7.2.1. Theory -- 7.2.2. Interpretation of Measurement Data -- 7.3. Frequency Domain Spectroscopy (FDS) -- 7.3.1. Interpretation of Measurement Data -- 7.4. Time or Frequency Domain? -- 7.5. Converting Time Domain Measurements to Frequency Domain -- 7.6. Practical Measurements Issues to be Considered -- 7.7. Future Trends -- Conclusions -- References -- Chapter 7SYMMETRY-INDUCED RESONANT TRANSMISSIONOF ELECTROMAGNETIC WAVES IN NON-PERIODICDIELECTRIC MICROSTRUCTURES -- Abstract -- 1. Introduction -- II. Theoretical Analysis of Optical Propagation in AperiodicDielectric Multilayers with Internal Symmetry -- III. Optical Observation of Symmetric Fibonacci DielectricMultilayers.

IV. Resonant Transmission and Frequency Trifurcation of LightWaves in Thue-Morse Dielectric Multilayers -- V. Manipulation of Resonant Transmission of ElectromagneticWave by Tuning Nonperiodic Structure -- VI. Selectable-Frequency and Tunable-Q Perfect Transmissionsof Electromagnetic Waves in Dielectric Heterostructures -- VII. Summary -- Acknowledgments -- References -- Chapter 8POLYMER DIELECTRIC MATERIALS -- Abstract -- Introduction -- 1. Classification of Low Dielectric Constant Polymer -- 1.1. Classification Based on Physical Structure -- 1.2. Classification Based on Dielectric Constant Value -- 1.3. Classification Based on the Low Dielectric Groups -- 2. Mechanism for Lowering Dielectric Constant -- 2.1. Polarization Mechanism -- 2.2. Methods for the Preparation of Low Dielectric Constant Polymer -- 3. Methods to Prepare Polymer Dielectrics -- 3.1. CVD and PECVD -- 3.2. Solution Deposition by Spin-Coating -- 3.3. Sol-Gel Processing -- 3.4. Templating -- 3.5. Thermal Induced Phase Separation -- 4. Polymer Materials with Low Dielectric Constant -- 4.1. Aromatic Polymers -- 4.1.1. Polyimides (PIs) -- 4.1.2. Poly (Aryl Ether)s -- 4.1.3. SiLK -- 4.1.4. Polyaniline -- 4.1.5. Benzocyclobutene (BCB) Resins -- 4.1.6. Poly (Binaphthylene Ether) and Poly (Diphenyl) -- 4.1.7. Polyanate Esters -- 4.1.8. Heterocyclic Polymers -- 4.2. Fluorinated Polymers -- 4.2.1. Fluorinated Polyimides -- 4.2.2. Fluorinated poly (aryther) s -- 4.2.3. Poly (Perfluorocyclobutane) (PFCB) -- 4.2.4. Fluorinated Epoxy Resin -- 4.2.5. Fluorinated Amorphous Carbon (α-C:H:F) -- 4.2.6. Fluorinated Poly (Binaphthylene Ether) -- 4.2.7. Fluorinated Poly (Benzoxazine) -- 4.3. Silicon Containing Polymers -- 4.3.1. Poly (silsequioxane) -- 4.3.2. Organosilicon Films (Si:O:C:H) -- 4.3.3. Organofluorosilicate Glass (OFSG) -- 4.4. Porous Polymers -- 4.4.1. Porous Polyimides.

4.4.2. Porous SiLK.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.