Advanced Hybrid Powertrains for Commercial Vehicles.
Material type:
- text
- computer
- online resource
- 9781468601374
- 629.2504
- TL221.15 .H634 2021
Cover -- Table of Contents -- Preface of the Second Edition -- Preface of the First Edition -- Acknowledgments -- Acknowledgments of the First Edition -- About the Authors -- Chapter 1 Introduction of Hybrid Powertrains for Commercial Vehicles -- 1.1 Introduction -- 1.2 History of Commercial Vehicles -- 1.3 Commercial Vehicle Classification -- 1.3.1 Commercial Vehicle Classification in the US -- 1.3.2 Commercial Vehicle Classification in Europe -- 1.3.3 Commercial Vehicle Classification in China -- 1.4 Energy Consumption of Commercial Vehicles -- 1.4.1 Energy Demand of Commercial Vehicles -- 1.4.2 On-Road Heavy-Duty Commercial Vehicles -- 1.4.3 Medium-Duty Trucks -- 1.4.4 Transit Buses -- 1.5 Drivers of the Efficient Powertrain for Commercial Vehicles -- 1.5.1 Fuel Prices and Energy Security -- 1.5.2 Greenhouse Gas Emissions and Fuel Economy Regulations -- 1.5.2.1 Background of Greenhouse Gases -- 1.5.2.2 CO 2 Emissions by Commercial Vehicles -- 1.5.2.3 GHG Emission Regulations and Fuel Economy Standards for Commercial Vehicles -- 1.5.3 Commercial Vehicle Exhaust Emissions -- 1.5.3.1 On-Road Vehicle Emission Standards -- 1.5.3.2 Off-Road Vehicles -- 1.5.3.3 Low-Emissions Zones -- 1.5.3.4 No-Idling Laws -- 1.6 Classification of Commercial Vehicle Hybrid Powertrains -- 1.6.1 Types of Energy Storage -- 1.6.1.1 Electric Hybrid -- 1.6.1.2 Hydraulic Hybrid -- 1.6.1.3 Pneumatic Hybrid -- 1.6.1.4 Mechanical (Flywheel) Hybrid -- 1.6.2 Hybrid Architecture -- 1.6.2.1 Parallel Hybrid -- 1.6.2.2 Series Hybrid -- 1.6.2.3 Power-Split Hybrid -- 1.6.2.4 Plug-In PHEV -- 1.6.2.5 Range Extender Hybrid Vehicle -- 1.6.2.6 In-Wheel Motors -- 1.6.2.7 Dedicated Hybrid Transmission -- 1.6.3 Hybrid Classification by Function -- 1.6.3.1 Mild Hybrid -- 1.6.3.2 Power Assist Hybrid -- 1.6.3.3 Full Hybrid -- 1.6.4 Fuel Cell Hybrid Vehicle -- 1.6.5 Hybrid Vehicles by Application.
References -- Chapter 2 Internal Combustion Engines for Commercial Vehicles -- 2.1 Requirements of Internal Combustion Engines for Commercial Vehicles -- 2.1.1 Size and Weight -- 2.1.2 Performance -- 2.1.2.1 Fuel Economy -- 2.1.2.2 Power -- 2.1.2.3 Torque -- 2.1.3 Reliability and Durability -- 2.1.4 Meeting Government Emissions Regulations -- 2.2 Basics of IC Engines -- 2.2.1 History of IC Engines for Commercial Vehicles -- 2.2.2 Basic Operations of IC Engines -- 2.2.2.1 Intake -- 2.2.2.2 Compression -- 2.2.2.3 Power -- 2.2.2.4 Exhaust -- 2.2.3 Otto and Diesel Cycles -- 2.2.4 Atkinson and Miller Cycles -- 2.3 Major Engine Components and Subsystems -- 2.3.1 Diesel Fuel Injection System -- 2.3.2 Turbocharger -- 2.3.3 EGR System -- 2.3.4 Engine Electronic Control Module -- 2.3.5 Exhaust Gas Aftertreatment Systems -- 2.3.5.1 Diesel Oxidation Catalyst -- 2.3.5.2 Selective Catalytic Reduction -- 2.3.5.3 NO x Adsorber Catalyst -- 2.3.5.4 Diesel Particulate Filter -- 2.4 Engine Operating Characteristics -- 2.4.1 Indicated Power -- 2.4.2 Mechanical Efficiency -- 2.4.3 Indicated Mean Effective Pressure -- 2.4.4 Brake Mean Effective Pressure -- 2.4.5 Specific Fuel Consumption -- 2.4.6 Torque/Engine Speed Characteristics -- 2.5 Advanced Engine Technologies -- 2.5.1 Low-Temperature Combustion -- 2.5.2 Advanced Boost Technologies -- 2.5.3 Electric Turbocompounding -- 2.5.4 Hybrid LNT/SCR Aftertreatment Technologies -- 2.5.5 VVA Technology for Heavy-Duty Diesel Engines -- 2.5.6 Summary of Thermal Efficiency Improvement -- References -- Chapter 3 Introduction of Clutches and Transmissions for Commercial Vehicles -- 3.1 Background of Transmissions -- 3.2 Key Characteristics of Vehicle Transmissions -- 3.2.1 Power Requirement -- 3.2.2 Matching the Engine and Transmission -- 3.2.2.1 Transmission Ratio -- 3.2.2.2 Top Gear Ratio -- 3.2.2.3 Minimum Gear Ratio.
3.2.2.4 Intermediate Gear Ratio -- 3.2.2.5 Matching Engine and Transmission -- 3.3 Key Components of Commercial Vehicle Drivetrains -- 3.3.1 Friction Clutch -- 3.3.2 Torque Converter -- 3.3.3 Planetary Gear Set -- 3.3.4 Compound Planetary Gear Sets -- 3.4 Manual Transmission -- 3.5 Automated Manual Transmission -- 3.6 Dual-Clutch Transmission -- 3.7 Fully Automatic Transmission -- 3.8 CVTs for Commercial Vehicles -- 3.8.1 Mechanical CVT -- 3.8.2 Hydrostatic CVT -- 3.8.3 Electric CVT -- 3.8.4 Magnetic CVT -- 3.9 Characteristics and Efficiency of Commercial Vehicle Transmissions -- References -- Chapter 4 Energy Storage Systems: Battery, Ultracapacitor, Accumulator, and Flywheel -- 4.1 Energy Storage Systems for Commercial Hybrid Applications -- 4.1.1 Hybrid Vehicle ESS Operating Requirements -- 4.2 Electrical Chemical Battery -- 4.2.1 Fundamentals of Electrochemical Cells -- 4.2.1.1 Thermodynamic Voltage -- 4.2.1.2 Battery Capacity -- 4.2.1.3 Specific Energy and Specific Power -- 4.2.2 Lead-Acid Battery -- 4.2.3 Nickel Metal Hydride -- 4.2.4 Li-Ion Battery -- 4.2.5 Supercapacitor -- 4.2.6 Battery/Supercapacitor Hybrid ESSs -- 4.2.7 Solid-State Battery -- 4.3 Battery Management Systems -- 4.3.1 Cell Protection -- 4.3.2 Battery State of Charge -- 4.3.2.1 Open-Circuit Voltage (OCV) Method -- 4.3.2.2 Coulomb Counting Method -- 4.3.2.3 Adaptive Methods -- 4.3.3 Cell Balancing -- 4.3.3.1 Charge Shunting -- 4.3.3.2 Charge Shuttling -- 4.3.3.3 Energy Converters -- 4.3.4 Battery Thermal Management -- 4.4 Hydraulic Energy Storage -- 4.4.1 Background of Hydraulic Accumulators -- 4.4.2 Types of Hydraulic Accumulators -- 4.4.2.1 Bladder Accumulators -- 4.4.2.2 Diaphragm Accumulators -- 4.4.2.3 Piston Accumulators -- 4.4.2.4 Metal Bellows Accumulators -- 4.4.3 Application of Hydraulic Accumulators -- 4.5 Flywheel Energy Storage -- 4.5.1 Mechanical Flywheels.
4.5.2 Electric Flywheels -- 4.5.3 Applications to Vehicles -- 4.6 Hydrogen Storage -- 4.6.1 Compressed Gas -- 4.6.2 Liquid Hydrogen -- 4.6.3 Cold/Cryo Compression -- 4.6.4 Metal-Organic Framework -- 4.6.5 Interstitial Hydrides -- 4.6.6 Complex Hydrides -- 4.6.7 Liquid Organic Hydrogen Carriers -- 4.6.8 Chemical Hydrogen -- References -- Chapter 5 Hybrid-Electric System Design and Optimization -- 5.1 Characteristics of Hybrid-Electric Powertrains -- 5.1.1 User Requirements -- 5.1.1.1 Economics -- 5.1.1.2 Performance -- 5.1.1.3 Auxiliary Features -- 5.1.2 Driving Cycles -- 5.2 Hybrid System Architectures -- 5.2.1 Parallel Hybrid System -- 5.2.1.1 Parallel Hybrid System Energy Flows -- 5.2.2 Series Hybrid System -- 5.2.3 Dual-Mode Hybrid System -- 5.2.4 Mild Hybrid with Start-Stop, Launch Assist, and Regenerative Braking -- 5.2.5 Hybrid Electric Vehicle Pre- and Post-transmission -- 5.2.6 Plug-In Hybrid Electric Vehicles -- 5.2.7 In-Wheel Motor Hybrid Electric Vehicles -- 5.3 Hybrid System Selection -- 5.3.1 Electric Motor/Generator Selection -- 5.3.1.1 Motor/Generator Sizing -- 5.3.2 Energy Storage System Selection -- 5.3.2.1 Battery Sizing -- 5.3.3 Electrical System Voltage -- 5.3.4 Thermal Management -- 5.4 Hybrid System Optimization -- 5.4.1 Static Optimization -- 5.4.2 Dynamic Programming -- 5.4.3 Optimization of Hybrid System Configuration and Operation -- References -- Chapter 6 Hybrid-Electric Power Conversion Systems -- 6.1 Basic Three-Phase Motor Theory -- 6.2 Basic Power Inverter Design and Operation -- 6.3 Basic Motor/Generator Designs -- 6.3.1 Induction Motor/Generator -- 6.3.2 PM Motor/Generator -- 6.3.3 Switched Reluctance Motor/Generator -- 6.3.4 Axial Flux Motor/Generator -- 6.4 Stator Design -- 6.4.1 Distributed Winding -- 6.4.2 Concentrated Pole Construction -- 6.5 Rotor Design -- 6.5.1 Squirrel Cage Rotor -- 6.5.2 Wound Rotor.
6.5.3 PM Rotor -- 6.5.3.1 Surface-Mounted PMs -- 6.5.3.2 Interior-Mounted PM Rotor -- 6.6 Electric Motor Power Density -- 6.6.1 Temperature -- 6.6.2 Copper Losses -- 6.6.3 Iron Losses -- 6.6.4 Motor Speed -- 6.6.5 Cooling -- 6.7 Electric Motor Characteristics -- 6.7.1 Power and Torque Characteristics -- 6.7.2 System Level Voltage -- 6.7.3 Back EMF -- 6.7.4 Torque Ripple -- 6.7.5 Cogging Torque -- 6.8 Motor Control -- 6.8.1 Controls in Healthy State -- 6.8.2 Fault Tolerant Controls -- References -- Chapter 7 Hydraulic Hybrid Powertrain System Design -- 7.1 Introduction -- 7.1.1 The Hydrostatic Transmission -- 7.1.1.1 Configurations -- 7.1.1.2 Classification of Hydrostatic Transmissions -- 7.1.1.3 Operating Characteristics of Hydrostatic Transmissions -- 7.1.2 Hydrostatic Regenerative Braking -- 7.1.3 User Requirements -- 7.2 Hydraulic Hybrid System Architecture -- 7.2.1 Parallel Hydraulic Hybrid Systems -- 7.2.2 Series Hydraulic Hybrid Systems -- 7.2.3 Multimode and Split Power-Flow Hydraulic Hybrid Systems -- 7.3 Design and Specification of Hydraulic Hybrid Systems -- 7.3.1 Hydraulic Pumps and Motors -- 7.3.1.1 Sizing of Pumps and Motors -- 7.3.1.2 Performance of Pumps and Motors -- 7.3.2 Hydraulic Accumulators -- 7.3.2.1 Sizing of Accumulators -- 7.3.2.2 Performance of Gas Accumulators -- 7.3.3 Hydraulic Lines and Other Components -- 7.3.4 Fluid Conditioning -- 7.3.5 Noise and Vibration -- 7.4 Examples of Systems at or near Production Application -- 7.4.1 Refuse Collection Vehicles -- 7.4.2 Package Delivery Vehicles -- 7.4.3 Multimode Split Power-Flow System in a Warehouse Vehicle -- References -- Chapter 8 Hydraulic Components and Controls -- 8.1 Introduction -- 8.2 Hydraulic Pumps and Motors -- 8.2.1 Gear Pumps and Motors -- 8.2.1.1 External Gear Units -- 8.2.1.2 Internal Gear Units -- 8.2.2 Vane Pumps and Motors -- 8.2.3 Piston Pumps and Motors.
8.2.4 Axial Piston Pump/Motors.
Powertrains for commercial vehicles have evolved since the late nineteenth-century invention of the ICE. In the revised second edition, the authors explore commercial powertrains through history from the ICE through the introduction of the hybrid powertrain in commercial vehicles.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.