ORPP logo
Image from Google Jackets

Power Integrity for Electrical and Computer Engineers.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2019Copyright date: ©2020Edition: 1st edDescription: 1 online resource (563 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119263265
Subject(s): Genre/Form: Additional physical formats: Print version:: Power Integrity for Electrical and Computer EngineersDDC classification:
  • 621.319
LOC classification:
  • TK1010 .D534 2020
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Part I Power Integrity Fundamentals -- Chapter 1 Introduction -- 1.1 Introduction to Power Integrity for Computer Engineers -- 1.2 Some Advancements in Power Integrity -- 1.3 First Principles Analysis -- 1.4 Scope of Text -- Bibliography -- Chapter 2 Power Conversion for Power Integrity -- 2.1 Power Distribution Systems -- 2.2 The Buck Converter -- 2.2.1 The LC Filter -- 2.2.2 Silicon Power Devices in a Buck Regulator -- 2.2.2.1 Power MOSFETs -- 2.3 Inductors -- 2.3.1 Losses in Power Inductors -- 2.4 Controllers -- 2.4.1 A Simple Feedback System -- 2.4.2 Generalized Controller Feedback Design Setup -- 2.4.3 Buck Regulator Design Example -- 2.5 Integration of Closed Loop Model into SPICE -- 2.6 Short Discussion on System Considerations for Power Conversion Integration -- 2.7 Advanced Topics in Power Conversion -- 2.8 Summary -- Bibliography -- Chapter 3 Platform Technologies and System Considerations -- 3.1 Physical Elements -- 3.1.1 Capacitors for PDN Applications -- 3.2 Power Delivery System Interaction -- 3.2.1 Power Load Line Fundamentals -- 3.2.1.1 Tolerance Band -- 3.2.1.2 Voltage Guardband -- 3.3 System Noise Considerations in Power Integrity -- 3.4 EMI and Power Integrity -- 3.5 Brief Discussion on Noise Mitigation for Power Integrity -- 3.6 Summary -- Bibliography -- Chapter 4 Electromagnetic Concepts for Power Integrity -- 4.1 Coordinate Systems -- 4.1.1 The Cylindrical Coordinate System -- 4.1.2 The Spherical Coordinate Systems -- 4.2 EM Concepts - Maxwell's Equations -- 4.2.1 The Biot-Savart Law -- 4.2.2 The Magnetic Vector Potential -- 4.3 Some Useful Closed‐Form Equations -- 4.3.1 Simple Plane‐Pair Inductance -- 4.3.2 Inductance of Two Wires in Space -- 4.3.3 Resistance Between Two Vias in a Plane -- 4.3.4 Inductance of Small Wire or Trace Above Plane Using Image Theory.
4.4 Examples of Using Equations -- 4.4.1 Power Trace Above a Plane Between Capacitors -- 4.4.2 Inductance of a Trace Over a Plane -- 4.5 Summary -- Bibliography -- Part II Tools for Power Integrity Analysis -- Chapter 5 Transmission Line Theory and Application -- 5.1 Telegrapher's Equations -- 5.1.1 Damped Transmission Line Approximation -- 5.2 Frequency‐Domain Analysis Fundamentals -- 5.3 Power Planes, Grids, and Transmission Lines -- 5.4 Summary -- Bibliography -- Chapter 6 Signal Analysis Review -- 6.1 Linear, Time‐Invariant Systems -- 6.2 The Dirac Delta Function -- 6.3 Convolution -- 6.4 Fourier Series -- 6.5 Fourier Transform -- 6.5.1 Convolution Theorem -- 6.5.2 Time‐Shift Theorem -- 6.5.3 Superposition Theorem -- 6.5.4 Duality Theorem -- 6.5.5 Differentiation Theorem -- 6.5.6 Integration Theorem -- 6.5.7 Multiplication Theorem -- 6.5.8 Time‐Scaling Theorem -- 6.5.9 Modulation or Frequency‐Translation Theorem -- 6.6 Laplace Transform -- 6.6.1 Convolution Theorem -- 6.6.2 Time‐Shift Theorem -- 6.6.3 Superposition Theorem -- 6.6.4 Differentiation Theorem -- 6.6.5 Integration Theorem -- 6.6.6 Multiplication Theorem -- 6.6.7 S‐shift Theorem -- 6.7 Summary -- Bibliography -- Chapter 7 Numerical Methods for Power Integrity -- 7.1 Introduction to Analytical Methods -- 7.1.1 Separation of Variables -- 7.1.2 Introduction to Variational Methods -- 7.1.2.1 The Galerkin Method -- 7.1.3 Conformal Mapping -- 7.2 Numerical Methods -- 7.2.1 The Finite Difference Method -- 7.2.2 The Finite Element Method -- 7.3 Error and Convergence -- 7.3.1 Errors in Numerical Analysis -- 7.3.2 Convergence and Accuracy -- 7.4 Summary -- Bibliography -- Part III Power Integrity Analytics -- Chapter 8 Frequency‐Domain Analysis -- 8.1 Introduction to FDA -- 8.2 The PDN Structure, Physically and Electrically -- 8.2.1 The Damped Transmission Line Approximation.
8.2.2 The Subcomponents of the PDN -- 8.3 Analytical Methods -- 8.4 Excitation in PDN Systems -- 8.5 PDN Optimization -- 8.5.1 Monte Carlo Analysis -- 8.6 Power Loss in PDN Systems -- 8.7 Summary -- Bibliography -- Chapter 9 Time‐Domain Analysis -- 9.1 Introduction to TDA -- 9.1.1 Data and Power Integrity -- 9.2 Voltage Droop Definitions -- 9.3 Droop Behavior and Dynamic Loads -- 9.3.1 Step Response -- 9.3.2 High‐Frequency Pulse Droop -- 9.3.3 Susceptible State Voltage Droop -- 9.4 Analytical Approach to Step Response -- 9.5 Boundary Budget System Discussion -- 9.6 Power Loss Due to the PDN -- 9.6.1 Dynamic Silicon Power and Leakage -- 9.6.2 DC Losses in the PDN -- 9.6.3 AC Power Loss in PDN -- 9.7 Summary -- Bibliography -- Chapter 10 Silicon Power Integrity -- 10.1 Introduction -- 10.2 Device Construction and Architecture Considerations -- 10.3 On‐die Decoupling -- 10.4 Device Metal Routing Revisited -- 10.5 The Localized Impedance Network -- 10.6 Multi‐rail vs. Single Rail Power Discussion -- 10.7 On‐die Gating -- 10.8 Discussion of System‐Level Issues with Charge and Current Density -- 10.9 Noise -- 10.10 Summary -- Bibliography -- Appendices -- A.1 Introduction to SPICE -- A.1.1 The SPICE Deck -- A.1.2 Sources and Loads -- A.1.3 Passive Elements -- A.1.4 Transistor Formats -- A.1.5 Analysis Calls, Frequency/Time Steps, and Initial Conditions -- A.1.6 Some SPICE Examples -- B.1 Quasi‐Static Fields -- C.1 Spherical Coordinate System -- D.1 Vector Identities and Formula -- E.1 Summary of Common Relationships Among Coordinate Systems -- E.1.1 Variable Translations -- E.1.2 Coordinate Translations -- E.1.3 Curl Equation Expansions -- E.1.4 Divergence Equation Expansions -- E.1.5 Del‐Operator Expansions -- E.1.6 Laplacian Expansions -- F.1 Some Notation Definitions -- G.1 Common Theorems -- Bibliography -- Index -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Part I Power Integrity Fundamentals -- Chapter 1 Introduction -- 1.1 Introduction to Power Integrity for Computer Engineers -- 1.2 Some Advancements in Power Integrity -- 1.3 First Principles Analysis -- 1.4 Scope of Text -- Bibliography -- Chapter 2 Power Conversion for Power Integrity -- 2.1 Power Distribution Systems -- 2.2 The Buck Converter -- 2.2.1 The LC Filter -- 2.2.2 Silicon Power Devices in a Buck Regulator -- 2.2.2.1 Power MOSFETs -- 2.3 Inductors -- 2.3.1 Losses in Power Inductors -- 2.4 Controllers -- 2.4.1 A Simple Feedback System -- 2.4.2 Generalized Controller Feedback Design Setup -- 2.4.3 Buck Regulator Design Example -- 2.5 Integration of Closed Loop Model into SPICE -- 2.6 Short Discussion on System Considerations for Power Conversion Integration -- 2.7 Advanced Topics in Power Conversion -- 2.8 Summary -- Bibliography -- Chapter 3 Platform Technologies and System Considerations -- 3.1 Physical Elements -- 3.1.1 Capacitors for PDN Applications -- 3.2 Power Delivery System Interaction -- 3.2.1 Power Load Line Fundamentals -- 3.2.1.1 Tolerance Band -- 3.2.1.2 Voltage Guardband -- 3.3 System Noise Considerations in Power Integrity -- 3.4 EMI and Power Integrity -- 3.5 Brief Discussion on Noise Mitigation for Power Integrity -- 3.6 Summary -- Bibliography -- Chapter 4 Electromagnetic Concepts for Power Integrity -- 4.1 Coordinate Systems -- 4.1.1 The Cylindrical Coordinate System -- 4.1.2 The Spherical Coordinate Systems -- 4.2 EM Concepts - Maxwell's Equations -- 4.2.1 The Biot-Savart Law -- 4.2.2 The Magnetic Vector Potential -- 4.3 Some Useful Closed‐Form Equations -- 4.3.1 Simple Plane‐Pair Inductance -- 4.3.2 Inductance of Two Wires in Space -- 4.3.3 Resistance Between Two Vias in a Plane -- 4.3.4 Inductance of Small Wire or Trace Above Plane Using Image Theory.

4.4 Examples of Using Equations -- 4.4.1 Power Trace Above a Plane Between Capacitors -- 4.4.2 Inductance of a Trace Over a Plane -- 4.5 Summary -- Bibliography -- Part II Tools for Power Integrity Analysis -- Chapter 5 Transmission Line Theory and Application -- 5.1 Telegrapher's Equations -- 5.1.1 Damped Transmission Line Approximation -- 5.2 Frequency‐Domain Analysis Fundamentals -- 5.3 Power Planes, Grids, and Transmission Lines -- 5.4 Summary -- Bibliography -- Chapter 6 Signal Analysis Review -- 6.1 Linear, Time‐Invariant Systems -- 6.2 The Dirac Delta Function -- 6.3 Convolution -- 6.4 Fourier Series -- 6.5 Fourier Transform -- 6.5.1 Convolution Theorem -- 6.5.2 Time‐Shift Theorem -- 6.5.3 Superposition Theorem -- 6.5.4 Duality Theorem -- 6.5.5 Differentiation Theorem -- 6.5.6 Integration Theorem -- 6.5.7 Multiplication Theorem -- 6.5.8 Time‐Scaling Theorem -- 6.5.9 Modulation or Frequency‐Translation Theorem -- 6.6 Laplace Transform -- 6.6.1 Convolution Theorem -- 6.6.2 Time‐Shift Theorem -- 6.6.3 Superposition Theorem -- 6.6.4 Differentiation Theorem -- 6.6.5 Integration Theorem -- 6.6.6 Multiplication Theorem -- 6.6.7 S‐shift Theorem -- 6.7 Summary -- Bibliography -- Chapter 7 Numerical Methods for Power Integrity -- 7.1 Introduction to Analytical Methods -- 7.1.1 Separation of Variables -- 7.1.2 Introduction to Variational Methods -- 7.1.2.1 The Galerkin Method -- 7.1.3 Conformal Mapping -- 7.2 Numerical Methods -- 7.2.1 The Finite Difference Method -- 7.2.2 The Finite Element Method -- 7.3 Error and Convergence -- 7.3.1 Errors in Numerical Analysis -- 7.3.2 Convergence and Accuracy -- 7.4 Summary -- Bibliography -- Part III Power Integrity Analytics -- Chapter 8 Frequency‐Domain Analysis -- 8.1 Introduction to FDA -- 8.2 The PDN Structure, Physically and Electrically -- 8.2.1 The Damped Transmission Line Approximation.

8.2.2 The Subcomponents of the PDN -- 8.3 Analytical Methods -- 8.4 Excitation in PDN Systems -- 8.5 PDN Optimization -- 8.5.1 Monte Carlo Analysis -- 8.6 Power Loss in PDN Systems -- 8.7 Summary -- Bibliography -- Chapter 9 Time‐Domain Analysis -- 9.1 Introduction to TDA -- 9.1.1 Data and Power Integrity -- 9.2 Voltage Droop Definitions -- 9.3 Droop Behavior and Dynamic Loads -- 9.3.1 Step Response -- 9.3.2 High‐Frequency Pulse Droop -- 9.3.3 Susceptible State Voltage Droop -- 9.4 Analytical Approach to Step Response -- 9.5 Boundary Budget System Discussion -- 9.6 Power Loss Due to the PDN -- 9.6.1 Dynamic Silicon Power and Leakage -- 9.6.2 DC Losses in the PDN -- 9.6.3 AC Power Loss in PDN -- 9.7 Summary -- Bibliography -- Chapter 10 Silicon Power Integrity -- 10.1 Introduction -- 10.2 Device Construction and Architecture Considerations -- 10.3 On‐die Decoupling -- 10.4 Device Metal Routing Revisited -- 10.5 The Localized Impedance Network -- 10.6 Multi‐rail vs. Single Rail Power Discussion -- 10.7 On‐die Gating -- 10.8 Discussion of System‐Level Issues with Charge and Current Density -- 10.9 Noise -- 10.10 Summary -- Bibliography -- Appendices -- A.1 Introduction to SPICE -- A.1.1 The SPICE Deck -- A.1.2 Sources and Loads -- A.1.3 Passive Elements -- A.1.4 Transistor Formats -- A.1.5 Analysis Calls, Frequency/Time Steps, and Initial Conditions -- A.1.6 Some SPICE Examples -- B.1 Quasi‐Static Fields -- C.1 Spherical Coordinate System -- D.1 Vector Identities and Formula -- E.1 Summary of Common Relationships Among Coordinate Systems -- E.1.1 Variable Translations -- E.1.2 Coordinate Translations -- E.1.3 Curl Equation Expansions -- E.1.4 Divergence Equation Expansions -- E.1.5 Del‐Operator Expansions -- E.1.6 Laplacian Expansions -- F.1 Some Notation Definitions -- G.1 Common Theorems -- Bibliography -- Index -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.