ORPP logo
Image from Google Jackets

Active Pharmaceutical Ingredients in Synthesis : Catalytic Processes in Research and Development.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2018Copyright date: ©2018Edition: 1st edDescription: 1 online resource (453 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783527807246
Subject(s): Genre/Form: Additional physical formats: Print version:: Active Pharmaceutical Ingredients in SynthesisLOC classification:
  • RS380 .B875 2018
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Abbreviations -- Chapter 1 Catalysis and Prerequisites for the Modern Pharmaceutical Industry Landscape -- 1.1 Introduction -- 1.2 Key Historical Moments in Catalysis Development -- 1.3 Key Historical Developments in Catalysis for API Synthesis: Including Catalytic Asymmetric Synthesis -- 1.4 Catalytic Synthesis of APIs in the Twenty-First Century: New Developments, Paradigm Shifts, and Future Challenges -- 1.5 Conclusions -- References -- Chapter 2 Catalytic Process Design: The Industrial Perspective -- 2.1 Introduction -- 2.2 Process Design -- 2.2.1 Heterogeneous and Homogeneous Catalysts -- 2.2.2 Product Safety and Regulatory Requirements -- 2.2.3 Control of Residual Metals -- 2.2.3.1 Filtration and Adsorption -- 2.2.3.2 Extraction and Scavenging -- 2.2.3.3 Organic Solvent Nanofiltration (OSN) -- 2.2.4 Design of Experiment (DoE) -- 2.2.5 Catalyst Recycling -- 2.2.6 Scalability, Safety, and Environmental Aspects -- 2.3 Examples of Homogeneous and Heterogeneous Catalytic Reactions in API Manufacture -- 2.3.1 Batch Operations -- 2.3.2 Continuous-Flow Operations -- 2.4 Conclusions -- References -- Chapter 3 Hydrogenation, Hydroformylation, and Other Reductions -- 3.1 Introduction -- 3.2 Hydrogenation -- 3.2.1 Hydrogenation of Alkenes -- 3.2.1.1 Enamides -- 3.2.2 Hydrogenation of Carbonyl Groups -- 3.2.3 Hydrogenation of Imines -- 3.3 Transfer Hydrogenation -- 3.3.1 On Ketones -- 3.3.2 On Imines -- 3.4 Reductions with Oxazaborolidine Catalytic Systems -- 3.5 Hydroformylation -- 3.6 Reductions with Organocatalysts -- 3.7 Other Catalytic Reductions -- 3.7.1 Reduction of Nitro Units -- 3.7.2 Other Reductions -- 3.8 Conclusions -- References -- Chapter 4 Oxidation: Nobel Prize Chemistry Catalysis -- 4.1 Introduction -- 4.2 Olefin Epoxidation.
4.2.1 Metal-based Electrophilic Methods -- 4.2.1.1 The Sharpless-Katsuki Asymmetric Epoxidation -- 4.2.1.2 The Jacobsen-Katsuki Asymmetric Epo -- 4.2.2 Nucleophilic Methods -- 4.2.2.1 Nucleophilic Methods with Hydrogen Peroxide -- 4.2.3 Organocatalytic Methods -- 4.3 Olefin Dihydroxylation -- 4.4 Olefin Aminohydroxylation -- 4.5 Sulfur Oxidation -- 4.5.1 Synthesis of Sulfoxides - Use of Titanium, Molybdenum, and Vanadium Catalysts -- 4.5.2 Synthesis of Sulfones - Use of Tungsten Catalysts -- 4.6 Catalytic Oxidation of Carbonyls - Cu/Nitroxyl and Nitroxyl/NOx Catalytic Systems -- 4.7 Oxidative Dehydrogenations (ODs) -- 4.8 Conclusions -- References -- Chapter 5 Catalytic Addition Reactions -- 5.1 Introduction -- 5.2 1,2-Additions -- 5.3 1,4-Additions -- 5.4 Conclusions -- References -- Chapter 6 Catalytic Cross-Coupling Reactions - Nobel Prize Catalysis -- 6.1 Introduction -- 6.2 Heck-Mizoroki Reaction -- 6.3 The Suzuki-Miyaura Reaction -- 6.4 The Buchwald-Hartwig Reaction -- 6.5 The Sonogashira-Hagihara Reaction -- 6.6 The Allylic Substitution Reaction -- 6.7 C-H Activation Processes -- 6.8 Oxidative CC Bond Formation -- 6.9 Conclusions -- References -- Chapter 7 Catalytic Metathesis Reactions: Nobel Prize Catalysis -- 7.1 Introduction -- 7.2 Metathesis with Ru-Based Catalysts -- 7.3 Mo-Based Metathesis -- 7.4 Conclusions -- References -- Chapter 8 Catalytic Cycloaddition Reactions: Coming Full Circle -- 8.1 Introduction -- 8.2 The "Classical" Catalytic Diels-Alder Reaction - Closing the Circle -- 8.3 The Catalytic Hetero-Diels-Alder (hDA) Reaction -- 8.4 The Catalytic [3+2] Cycloaddition Reaction -- 8.4.1 1,3-Dipolar Azomethine Ylide Cycloadditions -- 8.4.2 [3+2] Cycloadditions with Carbonyl Ylides -- 8.4.3 The Azide Catalytic [3+2] Cycloaddition Reaction - The Dawn of Click Chemistry -- 8.5 Other Cycloaddition Reactions -- 8.5.1 [2+2] Cycloaddition.
8.5.2 [2+2+2] Cycloaddition -- 8.5.3 [5+2] Cycloaddition -- 8.6 Conclusions -- References -- Chapter 9 Catalytic Cyclopropanation Reactions -- 9.1 Introduction -- 9.2 Metal-Catalyzed Processes -- 9.3 Conclusions -- References -- Chapter 10 Catalytic C-H Insertion Reactions -- 10.1 Introduction -- 10.2 Metal-Catalyzed Processes -- 10.3 Conclusions -- References -- Chapter 11 Phase-Transfer Catalysis -- 11.1 Introduction -- 11.2 Achiral Phase-Transfer Catalysis -- 11.3 Asymmetric Phase-Transfer Catalysis -- 11.4 Conclusions -- References -- Chapter 12 Biocatalysis -- 12.1 Introduction -- 12.2 Hydrolysis and Reverse Hydrolysis -- 12.3 Reduction -- 12.4 Oxidation -- 12.5 C-X Bond Formation -- 12.6 Conclusions -- References -- Index -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Abbreviations -- Chapter 1 Catalysis and Prerequisites for the Modern Pharmaceutical Industry Landscape -- 1.1 Introduction -- 1.2 Key Historical Moments in Catalysis Development -- 1.3 Key Historical Developments in Catalysis for API Synthesis: Including Catalytic Asymmetric Synthesis -- 1.4 Catalytic Synthesis of APIs in the Twenty-First Century: New Developments, Paradigm Shifts, and Future Challenges -- 1.5 Conclusions -- References -- Chapter 2 Catalytic Process Design: The Industrial Perspective -- 2.1 Introduction -- 2.2 Process Design -- 2.2.1 Heterogeneous and Homogeneous Catalysts -- 2.2.2 Product Safety and Regulatory Requirements -- 2.2.3 Control of Residual Metals -- 2.2.3.1 Filtration and Adsorption -- 2.2.3.2 Extraction and Scavenging -- 2.2.3.3 Organic Solvent Nanofiltration (OSN) -- 2.2.4 Design of Experiment (DoE) -- 2.2.5 Catalyst Recycling -- 2.2.6 Scalability, Safety, and Environmental Aspects -- 2.3 Examples of Homogeneous and Heterogeneous Catalytic Reactions in API Manufacture -- 2.3.1 Batch Operations -- 2.3.2 Continuous-Flow Operations -- 2.4 Conclusions -- References -- Chapter 3 Hydrogenation, Hydroformylation, and Other Reductions -- 3.1 Introduction -- 3.2 Hydrogenation -- 3.2.1 Hydrogenation of Alkenes -- 3.2.1.1 Enamides -- 3.2.2 Hydrogenation of Carbonyl Groups -- 3.2.3 Hydrogenation of Imines -- 3.3 Transfer Hydrogenation -- 3.3.1 On Ketones -- 3.3.2 On Imines -- 3.4 Reductions with Oxazaborolidine Catalytic Systems -- 3.5 Hydroformylation -- 3.6 Reductions with Organocatalysts -- 3.7 Other Catalytic Reductions -- 3.7.1 Reduction of Nitro Units -- 3.7.2 Other Reductions -- 3.8 Conclusions -- References -- Chapter 4 Oxidation: Nobel Prize Chemistry Catalysis -- 4.1 Introduction -- 4.2 Olefin Epoxidation.

4.2.1 Metal-based Electrophilic Methods -- 4.2.1.1 The Sharpless-Katsuki Asymmetric Epoxidation -- 4.2.1.2 The Jacobsen-Katsuki Asymmetric Epo -- 4.2.2 Nucleophilic Methods -- 4.2.2.1 Nucleophilic Methods with Hydrogen Peroxide -- 4.2.3 Organocatalytic Methods -- 4.3 Olefin Dihydroxylation -- 4.4 Olefin Aminohydroxylation -- 4.5 Sulfur Oxidation -- 4.5.1 Synthesis of Sulfoxides - Use of Titanium, Molybdenum, and Vanadium Catalysts -- 4.5.2 Synthesis of Sulfones - Use of Tungsten Catalysts -- 4.6 Catalytic Oxidation of Carbonyls - Cu/Nitroxyl and Nitroxyl/NOx Catalytic Systems -- 4.7 Oxidative Dehydrogenations (ODs) -- 4.8 Conclusions -- References -- Chapter 5 Catalytic Addition Reactions -- 5.1 Introduction -- 5.2 1,2-Additions -- 5.3 1,4-Additions -- 5.4 Conclusions -- References -- Chapter 6 Catalytic Cross-Coupling Reactions - Nobel Prize Catalysis -- 6.1 Introduction -- 6.2 Heck-Mizoroki Reaction -- 6.3 The Suzuki-Miyaura Reaction -- 6.4 The Buchwald-Hartwig Reaction -- 6.5 The Sonogashira-Hagihara Reaction -- 6.6 The Allylic Substitution Reaction -- 6.7 C-H Activation Processes -- 6.8 Oxidative CC Bond Formation -- 6.9 Conclusions -- References -- Chapter 7 Catalytic Metathesis Reactions: Nobel Prize Catalysis -- 7.1 Introduction -- 7.2 Metathesis with Ru-Based Catalysts -- 7.3 Mo-Based Metathesis -- 7.4 Conclusions -- References -- Chapter 8 Catalytic Cycloaddition Reactions: Coming Full Circle -- 8.1 Introduction -- 8.2 The "Classical" Catalytic Diels-Alder Reaction - Closing the Circle -- 8.3 The Catalytic Hetero-Diels-Alder (hDA) Reaction -- 8.4 The Catalytic [3+2] Cycloaddition Reaction -- 8.4.1 1,3-Dipolar Azomethine Ylide Cycloadditions -- 8.4.2 [3+2] Cycloadditions with Carbonyl Ylides -- 8.4.3 The Azide Catalytic [3+2] Cycloaddition Reaction - The Dawn of Click Chemistry -- 8.5 Other Cycloaddition Reactions -- 8.5.1 [2+2] Cycloaddition.

8.5.2 [2+2+2] Cycloaddition -- 8.5.3 [5+2] Cycloaddition -- 8.6 Conclusions -- References -- Chapter 9 Catalytic Cyclopropanation Reactions -- 9.1 Introduction -- 9.2 Metal-Catalyzed Processes -- 9.3 Conclusions -- References -- Chapter 10 Catalytic C-H Insertion Reactions -- 10.1 Introduction -- 10.2 Metal-Catalyzed Processes -- 10.3 Conclusions -- References -- Chapter 11 Phase-Transfer Catalysis -- 11.1 Introduction -- 11.2 Achiral Phase-Transfer Catalysis -- 11.3 Asymmetric Phase-Transfer Catalysis -- 11.4 Conclusions -- References -- Chapter 12 Biocatalysis -- 12.1 Introduction -- 12.2 Hydrolysis and Reverse Hydrolysis -- 12.3 Reduction -- 12.4 Oxidation -- 12.5 C-X Bond Formation -- 12.6 Conclusions -- References -- Index -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.