ORPP logo
Image from Google Jackets

Electronic Signals and Systems : Analysis, Design and Applications.

By: Contributor(s): Material type: TextTextPublisher: Milton : River Publishers, 2020Copyright date: ©2020Edition: 1st edDescription: 1 online resource (570 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781000795097
Subject(s): Genre/Form: Additional physical formats: Print version:: Electronic Signals and SystemsDDC classification:
  • 621.3822
LOC classification:
  • TK5102.9 .K436 2020
Online resources:
Contents:
Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Preface to the International Edition -- List of Figures -- List of Tables -- List of Abbreviations -- 1: Signals -- 1.1 Introduction -- 1.2 CT Signals -- 1.2.1 Frequency-CT Sinusoid Signals -- 1.2.2 Periodic and Aperiodic Signals -- 1.3 Manipulation of CT Signals -- 1.3.1 Reflection/Folding/Flipping -- 1.3.2 Shifting (Advanced and Delayed) -- 1.3.3 Scaling (Time and Magnitude) -- 1.3.4 Rule for Reflection, Shifting and Time Scaling -- 1.3.5 Use of Step and Ramp Function in Signal Processing -- 1.3.6 Even and Odd Signals -- 1.4 DT Signals -- 1.4.1 Continuous Versus Discrete Signals -- 1.4.2 Concept of Frequency - DT Signals -- 1.4.3 Time Domain and Frequency Domain -- 1.5 AD and DA Conversion -- 1.5.1 Processing Steps for AD Conversion -- 1.5.1.1 Sample and hold -- 1.5.1.2 Quantization -- 1.5.1.3 Coding -- 1.5.2 Sampling of Analogue Signals -- 1.6 The Sampling Theorem -- 1.7 Quantization Error -- 1.8 Representing DT Signal -- 1.8.1 Graphical Representation -- 1.8.2 Functional Representation -- 1.8.3 Sequence Representation -- 1.8.4 Tabular Representation -- 1.9 Elementary DT Signals -- 1.9.1 Unit Impulse -- 1.9.2 Unit Step Signal -- 1.9.3 Unit Ramp Signal -- 1.9.4 Exponential Signal -- 1.9.5 Sinusoidal Signal -- 1.10 Simple Manipulations of DT Signal -- 1.10.1 Reflection/Folding/Flipping -- 1.10.2 Shifting (Advanced and Delayed) -- 1.10.3 Scaling (Time and Magnitude) -- 1.10.4 Addition and Multiplication -- 1.10.5 Even and Odd Signals -- 1.11 Energy and Power Signals for CT and DT Signals -- 1.12 Problems and Solutions -- 2: Differential Equations -- 2.1 Introduction -- 2.2 Determination of the Transient Response, t -- 2.3 Determination of the Steady-State Response, ss -- 2.3.1 Zero- or Constant-Driving Function.
2.3.2 Ramp- or Acceleration-Driving Function -- 2.3.3 Exponential-Driving Function -- 2.3.4 Sinusoidal-Driving Function -- 2.4 Problems and Solutions -- 3: Laplace Transform -- 3.1 Introduction -- 3.2 Theorems of Laplace Transform -- 3.3 Differential Equations and Transfer Functions -- 3.4 Problems and Solutions -- 4: System Description -- 4.1 System -- 4.2 Properties of Continuous-Time System -- 4.2.1 Systems with Memory -- 4.2.2 Invertibility -- 4.2.3 Causality -- 4.2.4 Stability -- 4.2.5 Time Invariance -- 4.2.6 Linearity -- 4.3 Discrete-Time Systems -- 4.3.1 System's Representation -- 4.4 Symbol Used to Represent DTS -- 4.4.1 An Adder -- 4.4.2 A Constant Multiplier -- 4.4.3 A Signal Multiplier -- 4.4.4 Unit Delay Element -- 4.4.5 Unit Advanced Element -- 4.5 Properties of DTS -- 4.5.1 Static Versus Dynamic Systems -- 4.5.2 Time Invariant Versus Time-Variant System -- 4.5.3 Linear Versus Non-Linear System -- 4.5.3.1 Linear system -- 4.5.3.2 Non-Linear system -- 4.5.4 Causal vs Non-Causal System -- 4.5.5 Stable Versus Unstable System -- 4.6 Systems' Mathematical Model -- 4.6.1 Electrical Systems -- 4.6.1.1 The resistor R -- 4.6.1.2 The inductor L -- 4.6.1.3 The capacitor C -- 4.6.2 Mechanical Translational Systems -- 4.6.2.1 The mass element -- 4.6.2.2 The damper element -- 4.6.2.3 The spring element -- 4.6.3 Mechanical Rotational System -- 4.6.4 Electromechanical Systems -- 4.6.4.1 DC Generator -- 4.6.4.2 Servo Motor -- 4.7 Problems and Solutions -- 5: Control System Response -- 5.1 Convolution -- 5.2 Convolution Integral Formula -- 5.3 Time Response of First-Order Systems -- 5.3.1 System Step Response -- 5.3.2 System Dc Gain -- 5.3.3 System Ramp Response -- 5.4 Time Response of Second-Order Systems -- 5.5 Time Response Specifications in Design -- 5.5.1 Time Response and Pole Locations -- 5.6 Frequency Response of Systems.
5.6.1 First-Order Systems -- 5.6.2 Second-Order System -- 5.6.3 System Dc Gain -- 5.7 Problems and Solutions -- 6: Control System's Stability -- 6.1 Introduction -- 6.2 Routh-Hurwitz Stability Criterion -- 6.2.1 Case I -- 6.2.2 Case II -- 6.2.3 Case III -- 6.3 Problems and Solutions -- 7: Fourier Series -- 7.1 Periodic Function and Fourier Synthesis -- 7.2 Constructing a Waveform with Sine Waves -- 7.3 Constructing a Waveform with Cosine Waves -- 7.4 Constructing a Waveform with Cosine and Sine Waves -- 7.5 Constructing a Waveform with Both Sine and Cosine Waves and a DC Component -- 7.6 Trigonometric From of the Fourier Series -- 7.6.1 Use of Symmetry -- 7.6.2 Complex Form of the Fourier Series -- 7.7 Discrete Time Fourier Series of Periodic Signals -- 7.8 Gibbs' Phenomenon -- 7.9 Problems and Solutions -- 8: Fourier Transform -- 8.1 Introduction -- 8.2 Some Properties of the FT -- 8.2.1 Linearity -- 8.2.2 Time Reversal -- 8.2.3 Time Scaling -- 8.2.4 Time Transformation -- 8.2.5 Duality -- 8.2.6 Frequency Shifting -- 8.2.7 Time Differentiation -- 8.2.8 Frequency Differentiation -- 8.2.9 Convolution Property -- 8.3 Problems and Solutions -- 9: Solution of Difference Equations -- 9.1 Constant-Coefficient Difference Equation -- 9.2 Solution of Difference Equation -- 9.2.1 Using Sequential Procedure -- 9.2.2 Classical Technique -- 9.2.2.1 The Homogeneous Solution of Difference Equation -- 9.2.2.2 The Particular Solution of Difference Equation -- 9.2.2.3 Rules for Choosing Particular Solutions -- 9.3 Problems and Solutions -- 10: Z-Transform -- 10.1 Introduction -- 10.2 Z-Transform -- 10.2.1 Region of Convergence -- 10.2.2 Properties of RoC -- 10.3 Theorems and Properties of Z-Transform -- 10.3.1 Multiplication Property -- 10.3.2 Linearity Property -- 10.3.3 Time-Shifting Property -- 10.3.4 Scaling Property -- 10.3.5 Time Reversal Property.
10.3.6 Differentiation Property -- 10.3.7 Convolution Property -- 10.3.8 Correlation Property -- 10.3.9 Initial Value Theorem -- 10.3.10 Final Value Theorem -- 10.3.11 Time Delay Property (One Sided Z-Transform) -- 10.3.12 Time Advance Property -- 10.4 Inverse Z-Transform (Residue Method) -- 10.4.1 When the Poles are Real and Non-repeated -- 10.4.2 When the Poles are Real and Repeated -- 10.4.3 When the Poles are Complex -- 11: Analog Filters Design -- 11.1 Introduction -- 11.2 LP Filters -- 11.2.1 First Order RC LPF Circuit -- 11.2.2 Second Order StocktickerRLC LPF Circuit -- 11.2.3 Second Order RC LPF Circuit -- 11.3 High-Pass Filters -- 11.4 Band Pass Filters -- 11.5 Band Reject Filters -- 11.6 Designing Higher-Order Filters -- 11.7 Problems Associated with Passive Filters -- 11.8 Filters Using Operational Amplifiers -- 11.9 Representing Structure of Analogue Computers -- 11.10 Step-By-Step Design of Analogue Filters -- 11.11 Butterworth Approximation Function -- 11.11.1 Step-By-Step Design of Butterworth Filter -- 11.11.2 Design Procedure for Butterworth Filter -- 11.11.3 Design Procedure when H() is Specified as a Mere Number -- 11.11.4 Design Procedure when H() is Specified in Decibels -- 11.12 Chebyshev Approximation -- 11.13 Butterworth and Chebyshev Filters' Comparison -- 11.14 Practice Problems -- 12: Future Trends -- 12.1 Skin Lesion Segmentation from Dermoscopic Images using Convolutional Neural Network -- 12.1.1 Introduction -- 12.1.1.1 Literature Review -- 12.1.1.1.1 Pre-Processing Techniques -- 12.1.1.1.2 Segmentation Techniques -- 12.1.2 Materials and Methods -- 12.1.2.1 Dataset Modalities -- 12.1.2.2 Proposed Methodology -- 12.1.2.2.1 Image Pre-Processing -- 12.1.2.2.2 Model Architecture -- 12.1.2.2.3 Network Training -- 12.1.3 Results -- 12.1.3.1 Model Evaluation -- 12.1.4 Benchmarks -- 12.1.4.1 Comparison with Different Frameworks.
12.1.4.2 Comparison with Top 5 Challenge Participants of Leaderboard -- 12.1.4.3 Evaluation of Model on the PH2 Dataset -- 12.1.5 Conclusions -- References -- 12.2 Photodetector Based Indoor Positioning Systems Variants: New Look -- 12.2.1 Introduction -- 12.2.2 Characteristics of Led-Based IPS -- 12.2.2.1 Channel Model -- 12.2.2.2 Multiplexing Protocols -- 12.2.2.3 Field of View -- 12.2.2.4 Noise -- 12.2.2.5 Multipath Effect -- 12.2.2.6 Error -- 12.2.3 LED-Positioning Algorithms -- 12.2.3.1 Received Signal Strength -- 12.2.3.1.1 Trilateration -- 12.2.3.1.2 Fingerprinting -- 12.2.3.1.3 Proximity -- 12.2.3.2 Time of Arrival/Time Difference of Arrival -- 12.2.3.2.1 Trilateration -- 12.2.3.2.2 Multilateration -- 12.2.3.2.3 Angle of Arrival -- 12.2.3.3 Data Smoothing Filters -- 12.2.4 Types of Systems -- 12.2.5 Analysis Metrics -- 12.2.5.1 Accuracy -- 12.2.5.2 Complexity -- 12.2.5.3 Cost -- 12.2.6 Challenges and Future Concerns -- 12.2.7 New Look -- 12.2.8 Conclusion -- References -- References and Bibliography -- Index -- About the Authors.
Summary: The Book is intended for a course on signals & systems at the senior undergraduate level and above. The authors consider all the requirements and tools used in analysis and design of discrete time systems for filter design and signal processing.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Preface to the International Edition -- List of Figures -- List of Tables -- List of Abbreviations -- 1: Signals -- 1.1 Introduction -- 1.2 CT Signals -- 1.2.1 Frequency-CT Sinusoid Signals -- 1.2.2 Periodic and Aperiodic Signals -- 1.3 Manipulation of CT Signals -- 1.3.1 Reflection/Folding/Flipping -- 1.3.2 Shifting (Advanced and Delayed) -- 1.3.3 Scaling (Time and Magnitude) -- 1.3.4 Rule for Reflection, Shifting and Time Scaling -- 1.3.5 Use of Step and Ramp Function in Signal Processing -- 1.3.6 Even and Odd Signals -- 1.4 DT Signals -- 1.4.1 Continuous Versus Discrete Signals -- 1.4.2 Concept of Frequency - DT Signals -- 1.4.3 Time Domain and Frequency Domain -- 1.5 AD and DA Conversion -- 1.5.1 Processing Steps for AD Conversion -- 1.5.1.1 Sample and hold -- 1.5.1.2 Quantization -- 1.5.1.3 Coding -- 1.5.2 Sampling of Analogue Signals -- 1.6 The Sampling Theorem -- 1.7 Quantization Error -- 1.8 Representing DT Signal -- 1.8.1 Graphical Representation -- 1.8.2 Functional Representation -- 1.8.3 Sequence Representation -- 1.8.4 Tabular Representation -- 1.9 Elementary DT Signals -- 1.9.1 Unit Impulse -- 1.9.2 Unit Step Signal -- 1.9.3 Unit Ramp Signal -- 1.9.4 Exponential Signal -- 1.9.5 Sinusoidal Signal -- 1.10 Simple Manipulations of DT Signal -- 1.10.1 Reflection/Folding/Flipping -- 1.10.2 Shifting (Advanced and Delayed) -- 1.10.3 Scaling (Time and Magnitude) -- 1.10.4 Addition and Multiplication -- 1.10.5 Even and Odd Signals -- 1.11 Energy and Power Signals for CT and DT Signals -- 1.12 Problems and Solutions -- 2: Differential Equations -- 2.1 Introduction -- 2.2 Determination of the Transient Response, t -- 2.3 Determination of the Steady-State Response, ss -- 2.3.1 Zero- or Constant-Driving Function.

2.3.2 Ramp- or Acceleration-Driving Function -- 2.3.3 Exponential-Driving Function -- 2.3.4 Sinusoidal-Driving Function -- 2.4 Problems and Solutions -- 3: Laplace Transform -- 3.1 Introduction -- 3.2 Theorems of Laplace Transform -- 3.3 Differential Equations and Transfer Functions -- 3.4 Problems and Solutions -- 4: System Description -- 4.1 System -- 4.2 Properties of Continuous-Time System -- 4.2.1 Systems with Memory -- 4.2.2 Invertibility -- 4.2.3 Causality -- 4.2.4 Stability -- 4.2.5 Time Invariance -- 4.2.6 Linearity -- 4.3 Discrete-Time Systems -- 4.3.1 System's Representation -- 4.4 Symbol Used to Represent DTS -- 4.4.1 An Adder -- 4.4.2 A Constant Multiplier -- 4.4.3 A Signal Multiplier -- 4.4.4 Unit Delay Element -- 4.4.5 Unit Advanced Element -- 4.5 Properties of DTS -- 4.5.1 Static Versus Dynamic Systems -- 4.5.2 Time Invariant Versus Time-Variant System -- 4.5.3 Linear Versus Non-Linear System -- 4.5.3.1 Linear system -- 4.5.3.2 Non-Linear system -- 4.5.4 Causal vs Non-Causal System -- 4.5.5 Stable Versus Unstable System -- 4.6 Systems' Mathematical Model -- 4.6.1 Electrical Systems -- 4.6.1.1 The resistor R -- 4.6.1.2 The inductor L -- 4.6.1.3 The capacitor C -- 4.6.2 Mechanical Translational Systems -- 4.6.2.1 The mass element -- 4.6.2.2 The damper element -- 4.6.2.3 The spring element -- 4.6.3 Mechanical Rotational System -- 4.6.4 Electromechanical Systems -- 4.6.4.1 DC Generator -- 4.6.4.2 Servo Motor -- 4.7 Problems and Solutions -- 5: Control System Response -- 5.1 Convolution -- 5.2 Convolution Integral Formula -- 5.3 Time Response of First-Order Systems -- 5.3.1 System Step Response -- 5.3.2 System Dc Gain -- 5.3.3 System Ramp Response -- 5.4 Time Response of Second-Order Systems -- 5.5 Time Response Specifications in Design -- 5.5.1 Time Response and Pole Locations -- 5.6 Frequency Response of Systems.

5.6.1 First-Order Systems -- 5.6.2 Second-Order System -- 5.6.3 System Dc Gain -- 5.7 Problems and Solutions -- 6: Control System's Stability -- 6.1 Introduction -- 6.2 Routh-Hurwitz Stability Criterion -- 6.2.1 Case I -- 6.2.2 Case II -- 6.2.3 Case III -- 6.3 Problems and Solutions -- 7: Fourier Series -- 7.1 Periodic Function and Fourier Synthesis -- 7.2 Constructing a Waveform with Sine Waves -- 7.3 Constructing a Waveform with Cosine Waves -- 7.4 Constructing a Waveform with Cosine and Sine Waves -- 7.5 Constructing a Waveform with Both Sine and Cosine Waves and a DC Component -- 7.6 Trigonometric From of the Fourier Series -- 7.6.1 Use of Symmetry -- 7.6.2 Complex Form of the Fourier Series -- 7.7 Discrete Time Fourier Series of Periodic Signals -- 7.8 Gibbs' Phenomenon -- 7.9 Problems and Solutions -- 8: Fourier Transform -- 8.1 Introduction -- 8.2 Some Properties of the FT -- 8.2.1 Linearity -- 8.2.2 Time Reversal -- 8.2.3 Time Scaling -- 8.2.4 Time Transformation -- 8.2.5 Duality -- 8.2.6 Frequency Shifting -- 8.2.7 Time Differentiation -- 8.2.8 Frequency Differentiation -- 8.2.9 Convolution Property -- 8.3 Problems and Solutions -- 9: Solution of Difference Equations -- 9.1 Constant-Coefficient Difference Equation -- 9.2 Solution of Difference Equation -- 9.2.1 Using Sequential Procedure -- 9.2.2 Classical Technique -- 9.2.2.1 The Homogeneous Solution of Difference Equation -- 9.2.2.2 The Particular Solution of Difference Equation -- 9.2.2.3 Rules for Choosing Particular Solutions -- 9.3 Problems and Solutions -- 10: Z-Transform -- 10.1 Introduction -- 10.2 Z-Transform -- 10.2.1 Region of Convergence -- 10.2.2 Properties of RoC -- 10.3 Theorems and Properties of Z-Transform -- 10.3.1 Multiplication Property -- 10.3.2 Linearity Property -- 10.3.3 Time-Shifting Property -- 10.3.4 Scaling Property -- 10.3.5 Time Reversal Property.

10.3.6 Differentiation Property -- 10.3.7 Convolution Property -- 10.3.8 Correlation Property -- 10.3.9 Initial Value Theorem -- 10.3.10 Final Value Theorem -- 10.3.11 Time Delay Property (One Sided Z-Transform) -- 10.3.12 Time Advance Property -- 10.4 Inverse Z-Transform (Residue Method) -- 10.4.1 When the Poles are Real and Non-repeated -- 10.4.2 When the Poles are Real and Repeated -- 10.4.3 When the Poles are Complex -- 11: Analog Filters Design -- 11.1 Introduction -- 11.2 LP Filters -- 11.2.1 First Order RC LPF Circuit -- 11.2.2 Second Order StocktickerRLC LPF Circuit -- 11.2.3 Second Order RC LPF Circuit -- 11.3 High-Pass Filters -- 11.4 Band Pass Filters -- 11.5 Band Reject Filters -- 11.6 Designing Higher-Order Filters -- 11.7 Problems Associated with Passive Filters -- 11.8 Filters Using Operational Amplifiers -- 11.9 Representing Structure of Analogue Computers -- 11.10 Step-By-Step Design of Analogue Filters -- 11.11 Butterworth Approximation Function -- 11.11.1 Step-By-Step Design of Butterworth Filter -- 11.11.2 Design Procedure for Butterworth Filter -- 11.11.3 Design Procedure when H() is Specified as a Mere Number -- 11.11.4 Design Procedure when H() is Specified in Decibels -- 11.12 Chebyshev Approximation -- 11.13 Butterworth and Chebyshev Filters' Comparison -- 11.14 Practice Problems -- 12: Future Trends -- 12.1 Skin Lesion Segmentation from Dermoscopic Images using Convolutional Neural Network -- 12.1.1 Introduction -- 12.1.1.1 Literature Review -- 12.1.1.1.1 Pre-Processing Techniques -- 12.1.1.1.2 Segmentation Techniques -- 12.1.2 Materials and Methods -- 12.1.2.1 Dataset Modalities -- 12.1.2.2 Proposed Methodology -- 12.1.2.2.1 Image Pre-Processing -- 12.1.2.2.2 Model Architecture -- 12.1.2.2.3 Network Training -- 12.1.3 Results -- 12.1.3.1 Model Evaluation -- 12.1.4 Benchmarks -- 12.1.4.1 Comparison with Different Frameworks.

12.1.4.2 Comparison with Top 5 Challenge Participants of Leaderboard -- 12.1.4.3 Evaluation of Model on the PH2 Dataset -- 12.1.5 Conclusions -- References -- 12.2 Photodetector Based Indoor Positioning Systems Variants: New Look -- 12.2.1 Introduction -- 12.2.2 Characteristics of Led-Based IPS -- 12.2.2.1 Channel Model -- 12.2.2.2 Multiplexing Protocols -- 12.2.2.3 Field of View -- 12.2.2.4 Noise -- 12.2.2.5 Multipath Effect -- 12.2.2.6 Error -- 12.2.3 LED-Positioning Algorithms -- 12.2.3.1 Received Signal Strength -- 12.2.3.1.1 Trilateration -- 12.2.3.1.2 Fingerprinting -- 12.2.3.1.3 Proximity -- 12.2.3.2 Time of Arrival/Time Difference of Arrival -- 12.2.3.2.1 Trilateration -- 12.2.3.2.2 Multilateration -- 12.2.3.2.3 Angle of Arrival -- 12.2.3.3 Data Smoothing Filters -- 12.2.4 Types of Systems -- 12.2.5 Analysis Metrics -- 12.2.5.1 Accuracy -- 12.2.5.2 Complexity -- 12.2.5.3 Cost -- 12.2.6 Challenges and Future Concerns -- 12.2.7 New Look -- 12.2.8 Conclusion -- References -- References and Bibliography -- Index -- About the Authors.

The Book is intended for a course on signals & systems at the senior undergraduate level and above. The authors consider all the requirements and tools used in analysis and design of discrete time systems for filter design and signal processing.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.