ORPP logo
Image from Google Jackets

Compendium of Hydrogen Energy : Hydrogen Storage, Distribution and Infrastructure.

By: Contributor(s): Material type: TextTextSeries: Woodhead Publishing Series in Energy SeriesPublisher: San Diego : Elsevier Science & Technology, 2015Copyright date: ©2016Edition: 1st edDescription: 1 online resource (438 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781782423843
Subject(s): Genre/Form: Additional physical formats: Print version:: Compendium of Hydrogen EnergyDDC classification:
  • 665.81
LOC classification:
  • TP359.H8.C667 2016
Online resources:
Contents:
Front Cover -- Compendium of Hydrogen Energy: Volume 2: Hydrogen Storage, Distribution and Infrastructure -- Copyright -- Contents -- List of contributors -- Woodhead Publishing Series in Energy -- Part One: Hydrogen Storage in Pure Form -- Chapter 1: Introduction to hydrogen storage -- 1.1. Introduction -- 1.2. Physical storage -- 1.2.1. Compressed hydrogen -- 1.2.2. Cold-compressed hydrogen -- 1.2.3. Liquid hydrogen -- 1.2.4. Cryo-compressed hydrogen -- 1.3. Material-based hydrogen storage -- 1.3.1. Transition metal hydrides -- 1.3.2. Complex hydrides -- 1.3.3. Chemical hydrogen storage -- 1.3.4. Hydrogen sorbents -- References -- Chapter 2: Hydrogen liquefaction and liquid hydrogen storage -- 2.1. Introduction: Why liquefying hydrogen? -- 2.2. Basics of cryogenic liquefaction -- 2.2.1. Fundamental cooling effects -- 2.2.2. Fundamental liquefaction cycles -- 2.3. Hydrogen thermodynamic properties at ambient and low temperatures -- 2.3.1. Elemental hydrogen -- 2.3.2. Molecular hydrogen -- 2.3.3. Modifications of molecular hydrogen -- 2.3.4. Thermodynamics of molecular hydrogen modifications -- 2.4. Large-scale hydrogen liquefaction and storage -- 2.4.1. Today's technology -- 2.4.2. Future technologies -- 2.5. Advantages and disadvantages -- 2.6. Current uses of liquid hydrogen -- 2.7. Sources of further information and advice -- Acknowledgments -- References -- Chapter 3: Slush hydrogen production, storage, and transportation -- 3.1. Introduction: What is slush hydrogen? -- 3.2. Hydrogen energy system using slush hydrogen -- 3.3. Thermophysical properties of slush hydrogen -- 3.4. Process of producing and storing slush hydrogen -- 3.4.1. Hydrogen liquefaction by magnetic refrigeration -- 3.4.2. Slush hydrogen production -- 3.5. Density and mass flow meters for slush hydrogen -- 3.5.1. Density meter -- 3.5.2. Mass flow meter.
3.6. Advantages and disadvantages of transporting slush hydrogen via pipeline -- 3.6.1. Transfer pump for slush hydrogen -- 3.6.2. Pressure drop and heat transfer in pipe flow -- 3.6.3. Pressure drop in flow restrictions -- 3.6.4. Pressure drop in corrugated pipes -- 3.7. Uses of stored slush and liquid hydrogen -- 3.7.1. Nucleate pool boiling heat transfer to slush and liquid hydrogen -- 3.8. Conclusions -- 3.9. Future trends -- 3.10. Sources of future information and advice -- Appendix A. Production -- Appendix B. Flow and heat transfer -- Appendix C. Measurement instrumentation -- References -- Chapter 4: Underground and pipeline hydrogen storage -- 4.1. Underground hydrogen storage as an element of energy cycle -- 4.1.1. Industrial needs in underground hydrogen storage (UHS) -- 4.1.2. Conversion of hydrogen into other forms of energy and vice versa -- 4.1.3. Four principle types of UHS -- 4.1.4. Storage in salt caverns and porous media -- 4.2. Scientific problems related to UHS -- 4.2.1. State of the art -- 4.2.2. Recent research throughout the world -- 4.3. Biochemical transformations of underground hydrogen -- 4.3.1. Respiratory and constructive metabolism of microorganisms -- 4.3.2. Four kinds of hydrogenotrophic biotic reactions -- 4.3.3. Microbial activity in salt caverns -- 4.3.4. Hydrogen and bacteria in water -- 4.3.5. Kinetics of reactions and bacterial population growth -- 4.3.6. Experimental techniques of measuring kinetic functions -- 4.4. Hydrodynamic losses of H2 in UHS -- 4.4.1. Lateral spreading of H2 and instability of water displacement in aquifers -- 4.4.2. Selective technology of gas injection/production -- 4.4.3. Biofilm detachment, transport, and pore clogging in UHS -- 4.4.4. Gas evolution and transport in salt caverns -- 4.4.5. Coupled hydrodynamic, chemical, and bacterial transport: Self-organization phenomena.
4.5. Other problems -- 4.5.1. Abiotic reactions of hydrogen with rocks (pyrite) -- 4.5.2. Hydrogen leakage by diffusion -- 4.6. Pipeline storage of hydrogen -- 4.6.1. Safety and material durability -- 4.6.2. Leakage -- Acknowledgments -- References -- Part Two: Physical and chemical storage of hydrogen -- Chapter 5: Cryo-compressed hydrogen storage -- 5.1. Introduction -- 5.2. Thermodynamics and kinetics of cryo-compressed hydrogen storage -- 5.2.1. Refueling process -- 5.2.2. Discharge process -- 5.2.2.1. Two-phase region -- 5.2.2.2. Single-phase region -- 5.2.3. Dormancy process -- 5.2.3.1. Two-phase region -- 5.2.3.2. Single-phase region -- 5.2.4. Hydrogen loss -- 5.2.4.1. Two-phase region -- 5.2.4.2. Single-phase region -- 5.2.5. Method of solution and equation of state -- 5.3. Performance of onboard storage system -- 5.3.1. Refueling dynamics -- 5.3.2. Discharge dynamics -- 5.3.3. Storage capacity -- 5.3.4. Dormancy -- 5.4. Well-to-tank efficiency -- 5.5. Assessment of cryo-compressed hydrogen storage and outlook -- 5.5.1. Gravimetric capacity -- 5.5.2. Volumetric capacity -- 5.5.3. Carbon fiber and system cost -- 5.5.4. Well-to-tank efficiency -- 5.5.5. Dormancy and H2 loss rate -- Acknowledgments -- References -- Chapter 6: Adsorption of hydrogen on carbon nanostructure -- 6.1. Introduction -- 6.2. General considerations for physisorption of hydrogen on carbon nanostructures -- 6.3. Carbon nanotubes and fullerenes -- 6.4. Activated carbons -- 6.5. Layered graphene nanostructures -- 6.6. Zeolite-templated carbons -- 6.7. Conclusion -- References -- Chapter 7: Metal-organic frameworks for hydrogen storage -- 7.1. Introduction -- 7.2. Synthetic considerations -- 7.3. Cryo-temperature hydrogen storage at low and high pressures -- 7.3.1. Surface area, pore volume, and pore size -- 7.3.2. Catenation -- 7.3.3. Open-metal sites.
7.3.4. Dopant cations -- 7.3.5. Ligand sites and functionalization -- 7.4. Room temperature hydrogen storage at high pressure -- 7.5. Nanoconfinement of chemical hydrides in MOFs -- 7.6. Conclusions and future trends -- 7.6.1. Sources of further information and advice -- References -- Chapter 8: Other methods for the physical storage of hydrogen -- 8.1. Introduction -- 8.2. Storage of compressed hydrogen in glass microcontainers -- 8.2.1. Intrinsic and actual strength of glass -- 8.2.2. Hydrogen penetration through glass -- 8.2.3. Hollow glass microspheres (HGMs) -- 8.2.4. Advantages and limitations of HGMs -- 8.2.5. Enhanced hydrogen retrieving from HGMs -- 8.2.6. Glass capillary arrays -- 8.2.7. Methods of hydrogen encapsulation and retrieving -- 8.2.8. Flexible glass capillaries -- 8.2.9. Experimental results and prototypes of capillary vessels -- 8.3. Hydrogen physisorption in porous materials -- 8.4. Hydrogen hydrate clathrates -- 8.5. Conclusions and outlook -- References -- Chapter 9: Use of carbohydrates for hydrogen storage -- 9.1. Introduction -- 9.1.1. Carbohydrates -- 9.1.2. Hydrogen economy and storage -- 9.2. Converting carbohydrates to hydrogen by SyPaB -- 9.2.1. Overview of hydrogen production from carbohydrates -- 9.2.2. Advantages of SyPaB -- 9.2.3. Unique advantages of carbohydrates as a hydrogen carrier -- 9.3. Challenges of carbohydrates as hydrogen storage and respective solutions -- 9.3.1. Enzyme costs and stability -- 9.3.2. Cofactor costs and stability -- 9.3.3. Reaction rate -- 9.4. Future carbohydrate-to-hydrogen systems -- 9.4.1. Local hydrogen-generating stations -- 9.4.2. Sugar fuel cell vehicles -- 9.5. Conclusions -- 9.6. Sources of future information and advice -- References -- Chapter 10: Conceptual density functional theory (DFT) approach to all-metal aromaticity and hydrogen storage -- 10.1. Introduction.
10.1.1. Molecular clusters designed for hydrogen storage applications -- 10.1.1.1. Metal hydrides and metal clusters -- 10.1.1.2. Nanomaterials -- 10.1.1.2.1. Sheet-like frameworks -- 10.1.1.2.2. Tubular nanostructures (nanotubes) and cage-like molecules -- 10.1.1.3. Metal-organic frameworks (MOFs) -- 10.2. Background of conceptual DFT -- 10.2.0.1. Computational details -- 10.3. All-metal aromaticity -- 10.4. Role of aromaticity in hydrogen storage -- 10.5. Case studies of possible hydrogen-storage materials with the aid of CDFT -- 10.5.1. (N4C3H)6Li6 and its 3D molecular material -- 10.5.2. Microsolvated metal ions as hydrogen storage material -- 10.5.3. Exploring the hydrogen-binding capacity and the nature of fundamental interaction between transitional metal (TM)... -- 10.5.4. Clathrate hydrate -- 10.5.5. C12N12 cages -- 10.5.6. Cucurbiturils -- 10.6. Future trends -- Acknowledgments -- References -- Part Three: Hydrogen distribution and infrastructure -- Chapter 11: Introduction to hydrogen transportation -- 11.1. Introduction -- 11.2. Overview of methods for hydrogen transportation -- 11.2.1. Road and rail transportation of gaseous and liquid hydrogen -- 11.2.2. Ocean transportation of hydrogen -- 11.2.3. Hydrogen pipelines -- 11.3. Difficulties involved with the transportation of hydrogen -- 11.3.1. Energy considerations -- 11.3.2. Suitable materials -- 11.3.3. Safety issues -- 11.3.4. Hydrogen transportation costs -- 11.4. Future trends -- 11.4.1. Alternatives -- 11.4.2. SuperGrid -- 11.5. Sources of further information and advice -- References -- Chapter 12: Hydrogen transportation by pipelines -- 12.1. Introduction -- 12.2. Current hydrogen pipelines -- 12.3. Principles of transportation of hydrogen -- 12.3.1. Pipeline components -- 12.3.2. Compression stations -- 12.3.3. Pressure-reduction stations -- 12.4. Gas transportation principles.
12.4.1. Gas flow analysis.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Front Cover -- Compendium of Hydrogen Energy: Volume 2: Hydrogen Storage, Distribution and Infrastructure -- Copyright -- Contents -- List of contributors -- Woodhead Publishing Series in Energy -- Part One: Hydrogen Storage in Pure Form -- Chapter 1: Introduction to hydrogen storage -- 1.1. Introduction -- 1.2. Physical storage -- 1.2.1. Compressed hydrogen -- 1.2.2. Cold-compressed hydrogen -- 1.2.3. Liquid hydrogen -- 1.2.4. Cryo-compressed hydrogen -- 1.3. Material-based hydrogen storage -- 1.3.1. Transition metal hydrides -- 1.3.2. Complex hydrides -- 1.3.3. Chemical hydrogen storage -- 1.3.4. Hydrogen sorbents -- References -- Chapter 2: Hydrogen liquefaction and liquid hydrogen storage -- 2.1. Introduction: Why liquefying hydrogen? -- 2.2. Basics of cryogenic liquefaction -- 2.2.1. Fundamental cooling effects -- 2.2.2. Fundamental liquefaction cycles -- 2.3. Hydrogen thermodynamic properties at ambient and low temperatures -- 2.3.1. Elemental hydrogen -- 2.3.2. Molecular hydrogen -- 2.3.3. Modifications of molecular hydrogen -- 2.3.4. Thermodynamics of molecular hydrogen modifications -- 2.4. Large-scale hydrogen liquefaction and storage -- 2.4.1. Today's technology -- 2.4.2. Future technologies -- 2.5. Advantages and disadvantages -- 2.6. Current uses of liquid hydrogen -- 2.7. Sources of further information and advice -- Acknowledgments -- References -- Chapter 3: Slush hydrogen production, storage, and transportation -- 3.1. Introduction: What is slush hydrogen? -- 3.2. Hydrogen energy system using slush hydrogen -- 3.3. Thermophysical properties of slush hydrogen -- 3.4. Process of producing and storing slush hydrogen -- 3.4.1. Hydrogen liquefaction by magnetic refrigeration -- 3.4.2. Slush hydrogen production -- 3.5. Density and mass flow meters for slush hydrogen -- 3.5.1. Density meter -- 3.5.2. Mass flow meter.

3.6. Advantages and disadvantages of transporting slush hydrogen via pipeline -- 3.6.1. Transfer pump for slush hydrogen -- 3.6.2. Pressure drop and heat transfer in pipe flow -- 3.6.3. Pressure drop in flow restrictions -- 3.6.4. Pressure drop in corrugated pipes -- 3.7. Uses of stored slush and liquid hydrogen -- 3.7.1. Nucleate pool boiling heat transfer to slush and liquid hydrogen -- 3.8. Conclusions -- 3.9. Future trends -- 3.10. Sources of future information and advice -- Appendix A. Production -- Appendix B. Flow and heat transfer -- Appendix C. Measurement instrumentation -- References -- Chapter 4: Underground and pipeline hydrogen storage -- 4.1. Underground hydrogen storage as an element of energy cycle -- 4.1.1. Industrial needs in underground hydrogen storage (UHS) -- 4.1.2. Conversion of hydrogen into other forms of energy and vice versa -- 4.1.3. Four principle types of UHS -- 4.1.4. Storage in salt caverns and porous media -- 4.2. Scientific problems related to UHS -- 4.2.1. State of the art -- 4.2.2. Recent research throughout the world -- 4.3. Biochemical transformations of underground hydrogen -- 4.3.1. Respiratory and constructive metabolism of microorganisms -- 4.3.2. Four kinds of hydrogenotrophic biotic reactions -- 4.3.3. Microbial activity in salt caverns -- 4.3.4. Hydrogen and bacteria in water -- 4.3.5. Kinetics of reactions and bacterial population growth -- 4.3.6. Experimental techniques of measuring kinetic functions -- 4.4. Hydrodynamic losses of H2 in UHS -- 4.4.1. Lateral spreading of H2 and instability of water displacement in aquifers -- 4.4.2. Selective technology of gas injection/production -- 4.4.3. Biofilm detachment, transport, and pore clogging in UHS -- 4.4.4. Gas evolution and transport in salt caverns -- 4.4.5. Coupled hydrodynamic, chemical, and bacterial transport: Self-organization phenomena.

4.5. Other problems -- 4.5.1. Abiotic reactions of hydrogen with rocks (pyrite) -- 4.5.2. Hydrogen leakage by diffusion -- 4.6. Pipeline storage of hydrogen -- 4.6.1. Safety and material durability -- 4.6.2. Leakage -- Acknowledgments -- References -- Part Two: Physical and chemical storage of hydrogen -- Chapter 5: Cryo-compressed hydrogen storage -- 5.1. Introduction -- 5.2. Thermodynamics and kinetics of cryo-compressed hydrogen storage -- 5.2.1. Refueling process -- 5.2.2. Discharge process -- 5.2.2.1. Two-phase region -- 5.2.2.2. Single-phase region -- 5.2.3. Dormancy process -- 5.2.3.1. Two-phase region -- 5.2.3.2. Single-phase region -- 5.2.4. Hydrogen loss -- 5.2.4.1. Two-phase region -- 5.2.4.2. Single-phase region -- 5.2.5. Method of solution and equation of state -- 5.3. Performance of onboard storage system -- 5.3.1. Refueling dynamics -- 5.3.2. Discharge dynamics -- 5.3.3. Storage capacity -- 5.3.4. Dormancy -- 5.4. Well-to-tank efficiency -- 5.5. Assessment of cryo-compressed hydrogen storage and outlook -- 5.5.1. Gravimetric capacity -- 5.5.2. Volumetric capacity -- 5.5.3. Carbon fiber and system cost -- 5.5.4. Well-to-tank efficiency -- 5.5.5. Dormancy and H2 loss rate -- Acknowledgments -- References -- Chapter 6: Adsorption of hydrogen on carbon nanostructure -- 6.1. Introduction -- 6.2. General considerations for physisorption of hydrogen on carbon nanostructures -- 6.3. Carbon nanotubes and fullerenes -- 6.4. Activated carbons -- 6.5. Layered graphene nanostructures -- 6.6. Zeolite-templated carbons -- 6.7. Conclusion -- References -- Chapter 7: Metal-organic frameworks for hydrogen storage -- 7.1. Introduction -- 7.2. Synthetic considerations -- 7.3. Cryo-temperature hydrogen storage at low and high pressures -- 7.3.1. Surface area, pore volume, and pore size -- 7.3.2. Catenation -- 7.3.3. Open-metal sites.

7.3.4. Dopant cations -- 7.3.5. Ligand sites and functionalization -- 7.4. Room temperature hydrogen storage at high pressure -- 7.5. Nanoconfinement of chemical hydrides in MOFs -- 7.6. Conclusions and future trends -- 7.6.1. Sources of further information and advice -- References -- Chapter 8: Other methods for the physical storage of hydrogen -- 8.1. Introduction -- 8.2. Storage of compressed hydrogen in glass microcontainers -- 8.2.1. Intrinsic and actual strength of glass -- 8.2.2. Hydrogen penetration through glass -- 8.2.3. Hollow glass microspheres (HGMs) -- 8.2.4. Advantages and limitations of HGMs -- 8.2.5. Enhanced hydrogen retrieving from HGMs -- 8.2.6. Glass capillary arrays -- 8.2.7. Methods of hydrogen encapsulation and retrieving -- 8.2.8. Flexible glass capillaries -- 8.2.9. Experimental results and prototypes of capillary vessels -- 8.3. Hydrogen physisorption in porous materials -- 8.4. Hydrogen hydrate clathrates -- 8.5. Conclusions and outlook -- References -- Chapter 9: Use of carbohydrates for hydrogen storage -- 9.1. Introduction -- 9.1.1. Carbohydrates -- 9.1.2. Hydrogen economy and storage -- 9.2. Converting carbohydrates to hydrogen by SyPaB -- 9.2.1. Overview of hydrogen production from carbohydrates -- 9.2.2. Advantages of SyPaB -- 9.2.3. Unique advantages of carbohydrates as a hydrogen carrier -- 9.3. Challenges of carbohydrates as hydrogen storage and respective solutions -- 9.3.1. Enzyme costs and stability -- 9.3.2. Cofactor costs and stability -- 9.3.3. Reaction rate -- 9.4. Future carbohydrate-to-hydrogen systems -- 9.4.1. Local hydrogen-generating stations -- 9.4.2. Sugar fuel cell vehicles -- 9.5. Conclusions -- 9.6. Sources of future information and advice -- References -- Chapter 10: Conceptual density functional theory (DFT) approach to all-metal aromaticity and hydrogen storage -- 10.1. Introduction.

10.1.1. Molecular clusters designed for hydrogen storage applications -- 10.1.1.1. Metal hydrides and metal clusters -- 10.1.1.2. Nanomaterials -- 10.1.1.2.1. Sheet-like frameworks -- 10.1.1.2.2. Tubular nanostructures (nanotubes) and cage-like molecules -- 10.1.1.3. Metal-organic frameworks (MOFs) -- 10.2. Background of conceptual DFT -- 10.2.0.1. Computational details -- 10.3. All-metal aromaticity -- 10.4. Role of aromaticity in hydrogen storage -- 10.5. Case studies of possible hydrogen-storage materials with the aid of CDFT -- 10.5.1. (N4C3H)6Li6 and its 3D molecular material -- 10.5.2. Microsolvated metal ions as hydrogen storage material -- 10.5.3. Exploring the hydrogen-binding capacity and the nature of fundamental interaction between transitional metal (TM)... -- 10.5.4. Clathrate hydrate -- 10.5.5. C12N12 cages -- 10.5.6. Cucurbiturils -- 10.6. Future trends -- Acknowledgments -- References -- Part Three: Hydrogen distribution and infrastructure -- Chapter 11: Introduction to hydrogen transportation -- 11.1. Introduction -- 11.2. Overview of methods for hydrogen transportation -- 11.2.1. Road and rail transportation of gaseous and liquid hydrogen -- 11.2.2. Ocean transportation of hydrogen -- 11.2.3. Hydrogen pipelines -- 11.3. Difficulties involved with the transportation of hydrogen -- 11.3.1. Energy considerations -- 11.3.2. Suitable materials -- 11.3.3. Safety issues -- 11.3.4. Hydrogen transportation costs -- 11.4. Future trends -- 11.4.1. Alternatives -- 11.4.2. SuperGrid -- 11.5. Sources of further information and advice -- References -- Chapter 12: Hydrogen transportation by pipelines -- 12.1. Introduction -- 12.2. Current hydrogen pipelines -- 12.3. Principles of transportation of hydrogen -- 12.3.1. Pipeline components -- 12.3.2. Compression stations -- 12.3.3. Pressure-reduction stations -- 12.4. Gas transportation principles.

12.4.1. Gas flow analysis.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.