ORPP logo
Image from Google Jackets

Nonlinear Optical Cavity Dynamics : From Microresonators to Fiber Lasers.

By: Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2016Copyright date: ©2016Edition: 1st edDescription: 1 online resource (544 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783527685851
Subject(s): Genre/Form: Additional physical formats: Print version:: Nonlinear Optical Cavity DynamicsDDC classification:
  • 535.2
LOC classification:
  • QC446.2
Online resources:
Contents:
Intro -- Related Titles -- Title Page -- Copyright -- Table of Contents -- List of Contributors -- Foreword -- Chapter 1: Introduction -- References -- Chapter 2: Temporal Cavity Solitons in Kerr Media -- 2.1 Introduction -- 2.2 Mean-Field Equation of Coherently Driven Passive Kerr Resonators -- 2.3 Steady-State Solutions of the Mean-Field Equation -- 2.4 Existence and Characteristics of One-Dimensional Kerr Cavity Solitons -- 2.5 Original Experimental Observation of Temporal Kerr Cavity Solitons -- 2.6 Interactions of Temporal CSs -- 2.7 Breathing Temporal CSs -- 2.8 Emission of Dispersive Waves by Temporal CSs -- 2.9 Conclusion -- References -- Chapter 3: Dynamics and Interaction of Laser Cavity Solitonsin Broad-Area Semiconductor Lasers -- 3.1 Introduction -- 3.2 Devices and Setup -- 3.3 Basic Observations and Dispersive Optical Bistability -- 3.4 Modelling of LS and Theoretical Expectations in Homogenous System -- 3.5 Phase and Frequency Locking of Trapped Laser Cavity Solitons -- 3.6 Dynamics of Single Solitons -- 3.7 Summary and Outlook -- Acknowledgments -- References -- Chapter 4: Localized States in Semiconductor Microcavities, from Transverse to Longitudinal Structures and Delayed Systems -- 4.1 Introduction -- 4.2 Lasing Localized States -- 4.3 Localized States in Nonlinear Element with Delayed Retroaction -- 4.4 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 5: Dynamics of Dissipative Solitons in Presence of Inhomogeneities and Drift -- 5.1 Introduction -- 5.2 General Theory: Swift-Hohenberg Equation with Inhomogeneities and Drift -- 5.3 Excitability Regimes -- 5.4 Fiber Cavities and Microresonators: The Lugiato-Lefever model -- 5.5 Periodically Pumped Ring Cavities -- 5.6 Effects of Drift in a Periodically Pumped Ring Cavity -- 5.7 Summary -- Acknowledgments -- References.
Chapter 6: Dissipative Kerr Solitons in Optical Microresonators -- 6.1 Introduction to Optical Microresonator Kerr-Frequency Combs -- 6.2 Resonator Platforms -- 6.3 Physics of the Kerr-comb Formation Process -- 6.4 Dissipative Kerr Solitons in Optical Microresonators -- 6.5 Signatures of Dissipative Kerr Soliton Formation in Crystalline Resonators -- 6.6 Laser Tuning into the Dissipative Kerr Soliton States -- 6.7 Simulating Soliton Formation in Microresonators -- 6.8 Characterization of Temporal Dissipative Solitons in Crystalline Microresonators -- 6.9 Resonator Mode Structure and Soliton Formation -- 6.10 Using Dissipative Kerr solitons to Count the Cycles of Light -- 6.11 Temporal Solitons and Soliton-Induced Cherenkov Radiation in an Si3N4 Photonic Chip -- 6.12 Summary -- References -- Chapter 7: Dynamical Regimes in Kerr Optical Frequency Combs: Theory and Experiments -- 7.1 Introduction -- 7.2 The System -- 7.3 The Models -- 7.4 Dynamical States -- 7.5 Conclusion -- 7.6 Acknowledgements -- References -- Chapter 8: Nonlinear Effects in Microfibers and Microcoil Resonators -- 8.1 Introduction -- 8.2 Linear Optical Properties of Optical Microfibers -- 8.3 Linear Properties of Optical Microcoil Resonators -- 8.4 Bistability in Nonlinear Optical Microcoil Resonators -- 8.5 Harmonic Generation in Optical Microfibers and Microloop Resonators -- 8.6 Conclusions and Outlook -- References -- Chapter 9: Harmonic Laser Mode-Locking Based on Nonlinear Microresonators -- 9.1 Introduction -- 9.2 Modeling -- 9.3 Experiments -- 9.4 Conclusions -- References -- Chapter 10: Collective Dissipative Soliton Dynamics in Passively Mode-Locked Fiber Lasers -- 10.1 Introduction -- 10.2 Multistability and Hysteresis Phenomena -- 10.3 Soliton Crystals -- 10.4 Toward the Control of Harmonic Mode-Locking by Optical Injection -- 10.5 Complex Soliton Dynamics -- 10.6 Summary.
Acknowledgments -- References -- Chapter 11: Exploding Solitons and Rogue Waves in Optical Cavities -- 11.1 Introduction -- 11.2 Passively Mode-Locked Laser Model -- 11.3 The Results of Numerical Simulations -- 11.4 Probability Density Function -- 11.5 Conclusions -- 11.6 Acknowledgments -- References -- Chapter 12: SRS-Driven Evolution of Dissipative Solitons in Fiber Lasers -- 12.1 Introduction -- 12.2 Generation of Highly Chirped Dissipative Solitons in Fiber Laser Cavity -- 12.3 Scaling of Dissipative Solitons in All-Fiber Configuration -- 12.4 SRS-Driven Evolution of Dissipative Solitons in Fiber Laser Cavity -- 12.5 Conclusions and Future Developments -- References -- Chapter 13: Synchronization in Vectorial Solid-State Lasers -- 13.1 Introduction -- 13.2 Self-Locking in Dual-Polarization Lasers -- 13.3 Dynamics of Solid-State Lasers Submitted to a Frequency-Shifted -- 13.4 Conclusion -- Acknowledgments -- References -- Chapter 14: Vector Patterns and Dynamics in Fiber Laser Cavities -- 14.1 Introduction -- 14.2 Fiber Laser Models -- 14.3 Experiments of Vector Dynamics -- 14.4 Summary -- Acknowledgments -- References -- Chapter 15: Cavity Polariton Solitons -- 15.1 Introduction -- 15.2 Mathematical Model -- 15.3 One-Dimensional Bright Cavity Polariton Solitons -- 15.4 Two-Dimensional Parametric Polariton Solitons -- 15.5 Two-Dimensional Moving Bright CPSs -- 15.6 Summary -- Acknowledgments -- References -- Chapter 16: Data Methods and Computational Tools for Characterizing Complex Cavity Dynamics -- 16.1 Introduction -- 16.2 Data Methods -- 16.3 Adaptive, Equation-Free Control Architecture -- 16.4 Prototypical Example: Self-Tuning Mode-Locked Fiber Lasers -- 16.5 Broader Applications of Self-Tuning Complex Systems -- 16.6 Conclusions and Technological Outlook -- Acknowledgments -- References -- Chapter 17: Conclusion and Outlook -- References.
Index -- End User License Agreement.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Related Titles -- Title Page -- Copyright -- Table of Contents -- List of Contributors -- Foreword -- Chapter 1: Introduction -- References -- Chapter 2: Temporal Cavity Solitons in Kerr Media -- 2.1 Introduction -- 2.2 Mean-Field Equation of Coherently Driven Passive Kerr Resonators -- 2.3 Steady-State Solutions of the Mean-Field Equation -- 2.4 Existence and Characteristics of One-Dimensional Kerr Cavity Solitons -- 2.5 Original Experimental Observation of Temporal Kerr Cavity Solitons -- 2.6 Interactions of Temporal CSs -- 2.7 Breathing Temporal CSs -- 2.8 Emission of Dispersive Waves by Temporal CSs -- 2.9 Conclusion -- References -- Chapter 3: Dynamics and Interaction of Laser Cavity Solitonsin Broad-Area Semiconductor Lasers -- 3.1 Introduction -- 3.2 Devices and Setup -- 3.3 Basic Observations and Dispersive Optical Bistability -- 3.4 Modelling of LS and Theoretical Expectations in Homogenous System -- 3.5 Phase and Frequency Locking of Trapped Laser Cavity Solitons -- 3.6 Dynamics of Single Solitons -- 3.7 Summary and Outlook -- Acknowledgments -- References -- Chapter 4: Localized States in Semiconductor Microcavities, from Transverse to Longitudinal Structures and Delayed Systems -- 4.1 Introduction -- 4.2 Lasing Localized States -- 4.3 Localized States in Nonlinear Element with Delayed Retroaction -- 4.4 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 5: Dynamics of Dissipative Solitons in Presence of Inhomogeneities and Drift -- 5.1 Introduction -- 5.2 General Theory: Swift-Hohenberg Equation with Inhomogeneities and Drift -- 5.3 Excitability Regimes -- 5.4 Fiber Cavities and Microresonators: The Lugiato-Lefever model -- 5.5 Periodically Pumped Ring Cavities -- 5.6 Effects of Drift in a Periodically Pumped Ring Cavity -- 5.7 Summary -- Acknowledgments -- References.

Chapter 6: Dissipative Kerr Solitons in Optical Microresonators -- 6.1 Introduction to Optical Microresonator Kerr-Frequency Combs -- 6.2 Resonator Platforms -- 6.3 Physics of the Kerr-comb Formation Process -- 6.4 Dissipative Kerr Solitons in Optical Microresonators -- 6.5 Signatures of Dissipative Kerr Soliton Formation in Crystalline Resonators -- 6.6 Laser Tuning into the Dissipative Kerr Soliton States -- 6.7 Simulating Soliton Formation in Microresonators -- 6.8 Characterization of Temporal Dissipative Solitons in Crystalline Microresonators -- 6.9 Resonator Mode Structure and Soliton Formation -- 6.10 Using Dissipative Kerr solitons to Count the Cycles of Light -- 6.11 Temporal Solitons and Soliton-Induced Cherenkov Radiation in an Si3N4 Photonic Chip -- 6.12 Summary -- References -- Chapter 7: Dynamical Regimes in Kerr Optical Frequency Combs: Theory and Experiments -- 7.1 Introduction -- 7.2 The System -- 7.3 The Models -- 7.4 Dynamical States -- 7.5 Conclusion -- 7.6 Acknowledgements -- References -- Chapter 8: Nonlinear Effects in Microfibers and Microcoil Resonators -- 8.1 Introduction -- 8.2 Linear Optical Properties of Optical Microfibers -- 8.3 Linear Properties of Optical Microcoil Resonators -- 8.4 Bistability in Nonlinear Optical Microcoil Resonators -- 8.5 Harmonic Generation in Optical Microfibers and Microloop Resonators -- 8.6 Conclusions and Outlook -- References -- Chapter 9: Harmonic Laser Mode-Locking Based on Nonlinear Microresonators -- 9.1 Introduction -- 9.2 Modeling -- 9.3 Experiments -- 9.4 Conclusions -- References -- Chapter 10: Collective Dissipative Soliton Dynamics in Passively Mode-Locked Fiber Lasers -- 10.1 Introduction -- 10.2 Multistability and Hysteresis Phenomena -- 10.3 Soliton Crystals -- 10.4 Toward the Control of Harmonic Mode-Locking by Optical Injection -- 10.5 Complex Soliton Dynamics -- 10.6 Summary.

Acknowledgments -- References -- Chapter 11: Exploding Solitons and Rogue Waves in Optical Cavities -- 11.1 Introduction -- 11.2 Passively Mode-Locked Laser Model -- 11.3 The Results of Numerical Simulations -- 11.4 Probability Density Function -- 11.5 Conclusions -- 11.6 Acknowledgments -- References -- Chapter 12: SRS-Driven Evolution of Dissipative Solitons in Fiber Lasers -- 12.1 Introduction -- 12.2 Generation of Highly Chirped Dissipative Solitons in Fiber Laser Cavity -- 12.3 Scaling of Dissipative Solitons in All-Fiber Configuration -- 12.4 SRS-Driven Evolution of Dissipative Solitons in Fiber Laser Cavity -- 12.5 Conclusions and Future Developments -- References -- Chapter 13: Synchronization in Vectorial Solid-State Lasers -- 13.1 Introduction -- 13.2 Self-Locking in Dual-Polarization Lasers -- 13.3 Dynamics of Solid-State Lasers Submitted to a Frequency-Shifted -- 13.4 Conclusion -- Acknowledgments -- References -- Chapter 14: Vector Patterns and Dynamics in Fiber Laser Cavities -- 14.1 Introduction -- 14.2 Fiber Laser Models -- 14.3 Experiments of Vector Dynamics -- 14.4 Summary -- Acknowledgments -- References -- Chapter 15: Cavity Polariton Solitons -- 15.1 Introduction -- 15.2 Mathematical Model -- 15.3 One-Dimensional Bright Cavity Polariton Solitons -- 15.4 Two-Dimensional Parametric Polariton Solitons -- 15.5 Two-Dimensional Moving Bright CPSs -- 15.6 Summary -- Acknowledgments -- References -- Chapter 16: Data Methods and Computational Tools for Characterizing Complex Cavity Dynamics -- 16.1 Introduction -- 16.2 Data Methods -- 16.3 Adaptive, Equation-Free Control Architecture -- 16.4 Prototypical Example: Self-Tuning Mode-Locked Fiber Lasers -- 16.5 Broader Applications of Self-Tuning Complex Systems -- 16.6 Conclusions and Technological Outlook -- Acknowledgments -- References -- Chapter 17: Conclusion and Outlook -- References.

Index -- End User License Agreement.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.