ORPP logo
Image from Google Jackets

Beyond Oil and Gas : The Methanol Economy.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2018Copyright date: ©2018Edition: 3rd edDescription: 1 online resource (495 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783527805655
Subject(s): Genre/Form: Additional physical formats: Print version:: Beyond Oil and GasDDC classification:
  • 333.793
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Authors -- Acronyms -- Chapter 1 Introduction -- Chapter 2 Coal in the Industrial Revolution and Beyond -- Chapter 3 History of Petroleum Oil and Natural Gas -- 3.1 Oil Extraction and Exploration -- 3.2 Natural Gas -- Chapter 4 Fossil‐Fuel Resources and Their Use -- 4.1 Coal -- 4.2 Petroleum Oil -- 4.3 Unconventional Oil Sources -- 4.4 Tar Sands -- 4.5 Oil Shale -- 4.6 Light Tight Oil -- 4.7 Natural Gas -- 4.8 Coalbed Methane -- 4.9 Tight Sands and Shales -- 4.10 Methane Hydrates -- 4.11 Outlook -- Chapter 5 Oil and Natural Gas Reserves and Their Limits -- Chapter 6 The Continuing Need for Hydrocarbon Fuels and Products -- 6.1 Fractional Distillation of Oil -- 6.2 Thermal Cracking and Other Downstream Processes -- 6.3 Petroleum Products -- Chapter 7 Fossil Fuels and Climate Change -- 7.1 Mitigation -- Chapter 8 Renewable Energy Sources and Atomic Energy -- 8.1 Hydropower -- 8.2 Geothermal Energy -- 8.3 Wind Energy -- 8.4 Solar Energy: Photovoltaic and Thermal -- 8.4.1 Electricity from Photovoltaic Conversion -- 8.4.2 Solar Thermal Power for Electricity Production -- 8.4.3 Electric Power from Saline Solar Ponds -- 8.4.4 Solar Thermal Energy for Heating -- 8.4.5 Economics of Solar Energy -- 8.5 Bioenergy -- 8.5.1 Electricity from Biomass -- 8.5.2 Liquid Biofuels -- 8.5.2.1 Biomethanol -- 8.5.3 Advantages and Limitation of Biofuels -- 8.6 Ocean Energy: Thermal, Tidal, and Wave Power -- 8.6.1 Tidal Energy -- 8.6.2 Wave Power -- 8.6.3 Ocean Thermal Energy -- 8.7 Nuclear Energy -- 8.7.1 Energy from Nuclear Fission Reactions -- 8.7.2 Breeder Reactors -- 8.7.3 The Need for Nuclear Power -- 8.7.4 Economics -- 8.7.5 Safety -- 8.7.6 Radiation Hazards -- 8.7.7 Nuclear By‐products, Waste, and Their Management -- 8.7.8 Emissions -- 8.7.9 Nuclear Fusion.
8.7.10 Nuclear Power: An Energy Source for the Future -- 8.8 Future Outlook -- Chapter 9 The Hydrogen Economy and Its Limitations -- 9.1 Hydrogen and Its Properties -- 9.2 The Development of Hydrogen Energy -- 9.3 Production and Uses of Hydrogen -- 9.3.1 Hydrogen from Fossil Fuels -- 9.3.2 Hydrogen from Biomass -- 9.3.3 Photobiological Water Cleavage and Fermentation -- 9.3.4 Water Electrolysis -- 9.3.4.1 Electrolyzer Types -- 9.3.4.2 Electricity Source -- 9.3.5 Hydrogen Production Using Nuclear Energy -- 9.4 The Challenge of Hydrogen Storage -- 9.4.1 Liquid Hydrogen -- 9.4.2 Compressed Hydrogen -- 9.4.3 Metal Hydrides and Solid Adsorbents -- 9.4.4 Chemical Hydrogen Storage -- 9.5 Centralized or Decentralized Distribution of Hydrogen? -- 9.6 Hydrogen Safety -- 9.7 Hydrogen as a Transportation Fuel -- 9.8 Fuel Cells -- 9.8.1 History -- 9.8.2 Fuel Cell Efficiency -- 9.8.3 Hydrogen‐based Fuel Cells -- 9.8.4 PEM Fuel Cells for Transportation -- 9.8.5 Regenerative Fuel Cells -- 9.9 Outlook -- Chapter 10 The "Methanol Economy": General Aspects -- Chapter 11 Methanol and Dimethyl Ether as Fuels and Energy Carriers -- 11.1 Background and Properties of Methanol -- 11.1.1 Methanol in Nature -- 11.1.2 Methanol in Space -- 11.2 Chemical Uses of Methanol -- 11.3 Methanol as a Transportation Fuel -- 11.3.1 Development of Alcohols as Transportation Fuels -- 11.3.2 Methanol as a Fuel in Spark Ignition (SI) Engines -- 11.3.3 Methanol as a Fuel in Compression Ignition (Diesel) Engines and Methanol Engines -- 11.4 Dimethyl Ether as a Transportation Fuel -- 11.5 Biodiesel Fuel -- 11.6 Advanced Methanol‐powered Vehicles -- 11.6.1 Hydrogen for Fuel Cells Based on Methanol Reforming -- 11.7 Direct Methanol Fuel Cell (DMFC) -- 11.8 Fuel Cells Based on Other Methanol‐derived Fuels and Biofuel Cells -- 11.8.1 Regenerative Fuel Cell -- 11.9 Methanol and DME as Marine Fuels.
11.10 Methanol for Locomotives and Heavy Equipment -- 11.11 Methanol as an Aviation Fuel -- 11.12 Methanol for Static Power, Heat Generation, and Cooking -- 11.13 DME for Electricity Generation and as a Household Gas -- 11.14 Methanol and DME Storage and Distribution -- 11.15 Price of Methanol and DME -- 11.16 Safety of Methanol and DME -- 11.17 Emissions from Methanol‐ and DME‐powered Vehicles and Other Sources -- 11.18 Environmental Effects of Methanol and DME -- 11.19 The Beneficial Effect of Chemical CO2 Recycling to Methanol on Climate Change -- Chapter 12 Production of Methanol from Still Available Fossil‐Fuel Resources -- 12.1 Methanol from Fossil Fuels -- 12.1.1 Production via Syngas -- 12.1.2 Syngas from Coal -- 12.1.3 Syngas from Natural Gas -- 12.1.3.1 Steam Reforming of Methane -- 12.1.3.2 Partial Oxidation of Methane -- 12.1.3.3 Autothermal Reforming and Combination of Steam Reforming with Partial Oxidation -- 12.1.3.4 Syngas from CO2 Reforming of Methane -- 12.1.4 Syngas from Petroleum Oil and Higher Hydrocarbons -- 12.1.5 Economics of Syngas Generation -- 12.1.6 Alternative Syngas Generation Methods -- 12.1.6.1 Tri‐reforming of Natural Gas -- 12.1.6.2 Bi‐reforming of Methane for Methanol Production -- 12.1.6.3 Oxidative Bi‐reforming of Methane for Methanol Production: Methane Oxygenation -- 12.1.7 Other High‐Temperature Processes Based on Methane to Convert Carbon Dioxide to Methanol -- 12.1.7.1 Carnol Process -- 12.1.7.2 Combination of Methane Decomposition with Dry Reforming or Steam Reforming -- 12.1.7.3 Addition of CO2 to Syngas from Methane Steam Reforming -- 12.1.8 Coal to Methanol Without CO2 Emissions -- 12.1.9 Methanol from Syngas Through Methyl Formate -- 12.1.10 Methanol from Methane Without Producing Syngas -- 12.1.10.1 Direct Oxidation of Methane to Methanol -- 12.1.10.2 Catalytic Gas‐Phase Oxidation of Methane.
12.1.10.3 Liquid‐Phase Oxidation of Methane to Methanol -- 12.1.10.4 Methane to Methanol Conversion Through Monohalogenated Methanes -- 12.1.11 Microbial or Photochemical Conversion of Methane to Methanol -- 12.2 Dimethyl Ether Production from Syngas or Carbon Dioxide Using Fossil Fuels -- Chapter 13 Production of Renewable Methanol and DME from Biomass and Through Carbon Capture and Recycling -- 13.1 Biomass‐ and Waste‐Based Methanol and DME - Biomethanol and Bio‐DME -- 13.1.1 Gasification -- 13.1.1.1 Sources of Heat for the Gasification -- 13.1.2 Biocrude -- 13.1.3 Combination of Biomass and Coal -- 13.1.4 Excess CO2 in the Gas Mixture Derived from Biomass -- 13.1.5 Methanol from Biogas -- 13.1.6 Limitations of Biomass -- 13.1.7 Aquaculture -- 13.1.7.1 Water Plants -- 13.1.7.2 Algae -- 13.2 Chemical Recycling of Carbon Dioxide to Methanol -- 13.3 Heterogeneous Catalysts for the Production of Methanol from CO2 and H2 -- 13.4 Production of DME from CO2 Hydrogenation over Heterogeneous Catalysts -- 13.5 Reduction of CO2 to Methanol with Homogeneous Catalysts -- 13.6 Practical Applications of CO2 to Methanol -- 13.7 Alternative Two‐Step Route for CO2 Hydrogenation to Methanol -- 13.8 Where Should the Needed Hydrogen Come From? -- 13.9 CO2 Reduction to CO Followed by Hydrogenation -- 13.10 Electrochemical Reduction of CO2 -- 13.10.1 Direct Electrochemical CO2 Reduction to Methanol -- 13.10.2 Methods for High‐Rate Electrochemical CO2 Reduction -- 13.10.3 Syngas (Metgas) Production from Formic Acid Synthesized by Electrochemical Reduction of CO2 -- 13.11 Thermochemical and Photochemical Routes to Methanol -- 13.11.1 Solar‐Driven Thermochemical Conversion of CO2 to CO for Methanol Synthesis -- 13.11.2 Direct Photochemical Reduction of CO2 to Methanol -- 13.12 Sources of CO2.
13.12.1 Separating Carbon Dioxide from Industrial and Natural Sources for Chemical Recycling -- 13.12.2 CO2 Capture from Seawater -- 13.12.3 CO2 Capture from the Air -- 13.13 Atmospheric CO2 to Methanol -- 13.14 Cost of Producing Methanol from CO2 and Biomass -- 13.15 Advantages of Producing Methanol from CO2 and H2 -- 13.16 Reduction in Greenhouse Gas Emissions -- 13.17 Anthropogenic Carbon Cycle -- Chapter 14 Methanol‐Based Chemicals, Synthetic Hydrocarbons, and Materials -- 14.1 Methanol‐Based Chemical Products and Materials -- 14.2 Methyl‐tert‐butyl Ether and DME -- 14.3 Methanol Conversion to Light Olefins and Synthetic Hydrocarbons -- 14.4 Methanol to Olefin (MTO) Processes -- 14.5 Methanol to Gasoline (MTG) Processes -- 14.6 Methanol‐Based Proteins -- 14.7 Plant Growth Promotion -- 14.8 Outlook -- Chapter 15 Conclusion and Outlook -- 15.1 Where Do We Stand? -- 15.2 The "Methanol Economy": Progress and Solutions for the Future -- Further Reading and Information -- References -- Index -- EULA.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Authors -- Acronyms -- Chapter 1 Introduction -- Chapter 2 Coal in the Industrial Revolution and Beyond -- Chapter 3 History of Petroleum Oil and Natural Gas -- 3.1 Oil Extraction and Exploration -- 3.2 Natural Gas -- Chapter 4 Fossil‐Fuel Resources and Their Use -- 4.1 Coal -- 4.2 Petroleum Oil -- 4.3 Unconventional Oil Sources -- 4.4 Tar Sands -- 4.5 Oil Shale -- 4.6 Light Tight Oil -- 4.7 Natural Gas -- 4.8 Coalbed Methane -- 4.9 Tight Sands and Shales -- 4.10 Methane Hydrates -- 4.11 Outlook -- Chapter 5 Oil and Natural Gas Reserves and Their Limits -- Chapter 6 The Continuing Need for Hydrocarbon Fuels and Products -- 6.1 Fractional Distillation of Oil -- 6.2 Thermal Cracking and Other Downstream Processes -- 6.3 Petroleum Products -- Chapter 7 Fossil Fuels and Climate Change -- 7.1 Mitigation -- Chapter 8 Renewable Energy Sources and Atomic Energy -- 8.1 Hydropower -- 8.2 Geothermal Energy -- 8.3 Wind Energy -- 8.4 Solar Energy: Photovoltaic and Thermal -- 8.4.1 Electricity from Photovoltaic Conversion -- 8.4.2 Solar Thermal Power for Electricity Production -- 8.4.3 Electric Power from Saline Solar Ponds -- 8.4.4 Solar Thermal Energy for Heating -- 8.4.5 Economics of Solar Energy -- 8.5 Bioenergy -- 8.5.1 Electricity from Biomass -- 8.5.2 Liquid Biofuels -- 8.5.2.1 Biomethanol -- 8.5.3 Advantages and Limitation of Biofuels -- 8.6 Ocean Energy: Thermal, Tidal, and Wave Power -- 8.6.1 Tidal Energy -- 8.6.2 Wave Power -- 8.6.3 Ocean Thermal Energy -- 8.7 Nuclear Energy -- 8.7.1 Energy from Nuclear Fission Reactions -- 8.7.2 Breeder Reactors -- 8.7.3 The Need for Nuclear Power -- 8.7.4 Economics -- 8.7.5 Safety -- 8.7.6 Radiation Hazards -- 8.7.7 Nuclear By‐products, Waste, and Their Management -- 8.7.8 Emissions -- 8.7.9 Nuclear Fusion.

8.7.10 Nuclear Power: An Energy Source for the Future -- 8.8 Future Outlook -- Chapter 9 The Hydrogen Economy and Its Limitations -- 9.1 Hydrogen and Its Properties -- 9.2 The Development of Hydrogen Energy -- 9.3 Production and Uses of Hydrogen -- 9.3.1 Hydrogen from Fossil Fuels -- 9.3.2 Hydrogen from Biomass -- 9.3.3 Photobiological Water Cleavage and Fermentation -- 9.3.4 Water Electrolysis -- 9.3.4.1 Electrolyzer Types -- 9.3.4.2 Electricity Source -- 9.3.5 Hydrogen Production Using Nuclear Energy -- 9.4 The Challenge of Hydrogen Storage -- 9.4.1 Liquid Hydrogen -- 9.4.2 Compressed Hydrogen -- 9.4.3 Metal Hydrides and Solid Adsorbents -- 9.4.4 Chemical Hydrogen Storage -- 9.5 Centralized or Decentralized Distribution of Hydrogen? -- 9.6 Hydrogen Safety -- 9.7 Hydrogen as a Transportation Fuel -- 9.8 Fuel Cells -- 9.8.1 History -- 9.8.2 Fuel Cell Efficiency -- 9.8.3 Hydrogen‐based Fuel Cells -- 9.8.4 PEM Fuel Cells for Transportation -- 9.8.5 Regenerative Fuel Cells -- 9.9 Outlook -- Chapter 10 The "Methanol Economy": General Aspects -- Chapter 11 Methanol and Dimethyl Ether as Fuels and Energy Carriers -- 11.1 Background and Properties of Methanol -- 11.1.1 Methanol in Nature -- 11.1.2 Methanol in Space -- 11.2 Chemical Uses of Methanol -- 11.3 Methanol as a Transportation Fuel -- 11.3.1 Development of Alcohols as Transportation Fuels -- 11.3.2 Methanol as a Fuel in Spark Ignition (SI) Engines -- 11.3.3 Methanol as a Fuel in Compression Ignition (Diesel) Engines and Methanol Engines -- 11.4 Dimethyl Ether as a Transportation Fuel -- 11.5 Biodiesel Fuel -- 11.6 Advanced Methanol‐powered Vehicles -- 11.6.1 Hydrogen for Fuel Cells Based on Methanol Reforming -- 11.7 Direct Methanol Fuel Cell (DMFC) -- 11.8 Fuel Cells Based on Other Methanol‐derived Fuels and Biofuel Cells -- 11.8.1 Regenerative Fuel Cell -- 11.9 Methanol and DME as Marine Fuels.

11.10 Methanol for Locomotives and Heavy Equipment -- 11.11 Methanol as an Aviation Fuel -- 11.12 Methanol for Static Power, Heat Generation, and Cooking -- 11.13 DME for Electricity Generation and as a Household Gas -- 11.14 Methanol and DME Storage and Distribution -- 11.15 Price of Methanol and DME -- 11.16 Safety of Methanol and DME -- 11.17 Emissions from Methanol‐ and DME‐powered Vehicles and Other Sources -- 11.18 Environmental Effects of Methanol and DME -- 11.19 The Beneficial Effect of Chemical CO2 Recycling to Methanol on Climate Change -- Chapter 12 Production of Methanol from Still Available Fossil‐Fuel Resources -- 12.1 Methanol from Fossil Fuels -- 12.1.1 Production via Syngas -- 12.1.2 Syngas from Coal -- 12.1.3 Syngas from Natural Gas -- 12.1.3.1 Steam Reforming of Methane -- 12.1.3.2 Partial Oxidation of Methane -- 12.1.3.3 Autothermal Reforming and Combination of Steam Reforming with Partial Oxidation -- 12.1.3.4 Syngas from CO2 Reforming of Methane -- 12.1.4 Syngas from Petroleum Oil and Higher Hydrocarbons -- 12.1.5 Economics of Syngas Generation -- 12.1.6 Alternative Syngas Generation Methods -- 12.1.6.1 Tri‐reforming of Natural Gas -- 12.1.6.2 Bi‐reforming of Methane for Methanol Production -- 12.1.6.3 Oxidative Bi‐reforming of Methane for Methanol Production: Methane Oxygenation -- 12.1.7 Other High‐Temperature Processes Based on Methane to Convert Carbon Dioxide to Methanol -- 12.1.7.1 Carnol Process -- 12.1.7.2 Combination of Methane Decomposition with Dry Reforming or Steam Reforming -- 12.1.7.3 Addition of CO2 to Syngas from Methane Steam Reforming -- 12.1.8 Coal to Methanol Without CO2 Emissions -- 12.1.9 Methanol from Syngas Through Methyl Formate -- 12.1.10 Methanol from Methane Without Producing Syngas -- 12.1.10.1 Direct Oxidation of Methane to Methanol -- 12.1.10.2 Catalytic Gas‐Phase Oxidation of Methane.

12.1.10.3 Liquid‐Phase Oxidation of Methane to Methanol -- 12.1.10.4 Methane to Methanol Conversion Through Monohalogenated Methanes -- 12.1.11 Microbial or Photochemical Conversion of Methane to Methanol -- 12.2 Dimethyl Ether Production from Syngas or Carbon Dioxide Using Fossil Fuels -- Chapter 13 Production of Renewable Methanol and DME from Biomass and Through Carbon Capture and Recycling -- 13.1 Biomass‐ and Waste‐Based Methanol and DME - Biomethanol and Bio‐DME -- 13.1.1 Gasification -- 13.1.1.1 Sources of Heat for the Gasification -- 13.1.2 Biocrude -- 13.1.3 Combination of Biomass and Coal -- 13.1.4 Excess CO2 in the Gas Mixture Derived from Biomass -- 13.1.5 Methanol from Biogas -- 13.1.6 Limitations of Biomass -- 13.1.7 Aquaculture -- 13.1.7.1 Water Plants -- 13.1.7.2 Algae -- 13.2 Chemical Recycling of Carbon Dioxide to Methanol -- 13.3 Heterogeneous Catalysts for the Production of Methanol from CO2 and H2 -- 13.4 Production of DME from CO2 Hydrogenation over Heterogeneous Catalysts -- 13.5 Reduction of CO2 to Methanol with Homogeneous Catalysts -- 13.6 Practical Applications of CO2 to Methanol -- 13.7 Alternative Two‐Step Route for CO2 Hydrogenation to Methanol -- 13.8 Where Should the Needed Hydrogen Come From? -- 13.9 CO2 Reduction to CO Followed by Hydrogenation -- 13.10 Electrochemical Reduction of CO2 -- 13.10.1 Direct Electrochemical CO2 Reduction to Methanol -- 13.10.2 Methods for High‐Rate Electrochemical CO2 Reduction -- 13.10.3 Syngas (Metgas) Production from Formic Acid Synthesized by Electrochemical Reduction of CO2 -- 13.11 Thermochemical and Photochemical Routes to Methanol -- 13.11.1 Solar‐Driven Thermochemical Conversion of CO2 to CO for Methanol Synthesis -- 13.11.2 Direct Photochemical Reduction of CO2 to Methanol -- 13.12 Sources of CO2.

13.12.1 Separating Carbon Dioxide from Industrial and Natural Sources for Chemical Recycling -- 13.12.2 CO2 Capture from Seawater -- 13.12.3 CO2 Capture from the Air -- 13.13 Atmospheric CO2 to Methanol -- 13.14 Cost of Producing Methanol from CO2 and Biomass -- 13.15 Advantages of Producing Methanol from CO2 and H2 -- 13.16 Reduction in Greenhouse Gas Emissions -- 13.17 Anthropogenic Carbon Cycle -- Chapter 14 Methanol‐Based Chemicals, Synthetic Hydrocarbons, and Materials -- 14.1 Methanol‐Based Chemical Products and Materials -- 14.2 Methyl‐tert‐butyl Ether and DME -- 14.3 Methanol Conversion to Light Olefins and Synthetic Hydrocarbons -- 14.4 Methanol to Olefin (MTO) Processes -- 14.5 Methanol to Gasoline (MTG) Processes -- 14.6 Methanol‐Based Proteins -- 14.7 Plant Growth Promotion -- 14.8 Outlook -- Chapter 15 Conclusion and Outlook -- 15.1 Where Do We Stand? -- 15.2 The "Methanol Economy": Progress and Solutions for the Future -- Further Reading and Information -- References -- Index -- EULA.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.